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Abstract. Nuclear power plants and chemical plants contain many piping, which degrades with age. 
As a result of a reduction in structural strength, guillotine breaking and rupturing can occur. Piping is 
subjected to tension and bending, but the influence of the load history on the integrity of piping is 
poorly understood. The present study is to develop an improved integrity assessment method for a 
stainless steel pipe with a part-through notch that takes into account the load history. This involved: 
(1) Determining the feasibility of the leak-before-break (LBB) concept for piping, (2) Evaluating the 
crack penetration stress and (3) Estimating the plastic collapse strength. Conclusions are as follows: 
(1) The LBB concept is found to be applicable, (2) The crack penetration stress is approximately equal 
to the maximum stress and (3) The plastic collapse strength of a part-through notched specimen can 
be safely estimated using the theoretical plastic collapse strength of a through-wall notched pipe. 

1. Introduction 
Piping is widely used in fields related to energy storage, such as nuclear power plants. There are 

several types of nuclear reactors [1], and many of the nuclear power plants in Japan are light-water 
reactors. Steam is generated by a light-water reactor using low-enriched uranium as fuel and turns a 
turbine to create electricity. Piping for transporting steam to the turbine and for transporting cooling 
water is generally constructed from an austenitic stainless steel, which has excellent ductility, 
toughness, and corrosion resistance. High-temperature and high-pressure fluid flows in the piping, 
which is always subjected to tensile stress in the axial direction and the circumferential direction due 
to the internal pressure [2, 3]. Damage such as fatigue cracking, thinning, and stress corrosion cracking 
is caused by aging. In addition, cracks leading to failure occur in the piping when the piping is 
accidentally subjected to the high stresses caused by earthquakes. The load history of the tension 
caused by the internal pressure and the bending load due to the earthquake is not clear in actual piping 
[4, 5]. Therefore, it is necessary to investigate the influence of the load history on the integrity of 
piping. The integrity assessment is carried out based on the Rules on Fitness-for-Service for Nuclear 
Power Plants (maintenance standard) of the Japan Society of Mechanical Engineers in Japan [6]. If 
flaws are found in the piping at a nuclear power plant, they are modeled in a form that enables the 
integrity of the piping to be evaluated using fracture mechanics. Then, whether the model of the flaw 
is within the allowable size range is judged.  

The LBB concept is a fail-safe design criterion and is especially important for the nuclear industry 
[7]. In the LBB concept, a significant crack can be detected before a guillotine break because fluid 
leaks through the crack from piping before unstable fracture occurs. A guillotine break in piping can 
cause severe damage to a nuclear power plants. The validity of the LBB concept considering the load 
history has not been sufficiently discussed. The present study attempts to clarify the influence of load 
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history on the validity of LBB for cracked austenitic stainless steel pipe subjected to a combined load 
of tension and bending, and the following topics are investigated. A combined load of tension and 
bending is applied to pressurized austenitic stainless steel piping having a part-through notch until 
failure, and the plastic collapse stress, the stress at the leakage, and the maximum stress are discussed. 

2. Theory 
The theoretical plastic collapse stress is calculated for a pipe with a circumferential part-through 

notch. The distribution of the stress along the axial direction in the ligament area of a part-through 
notched pipe subjected to a combined axial force F and bending moment M at plastic collapse is shown 
in Fig. 1. 
 

 
 

Fig. 1. Stress distribution of piping with a circumferential part-through notch. 
 

The pipe is assumed to be a thin-walled cylinder and an elastic-perfectly plastic body to calculate 
the theoretical plastic collapse stress. The relationship between the membrane stress, σm, and the 
bending stress, σb, for the part-thorough notched pipe at plastic collapse can be obtained from the 
following equations:  

ఙౘఙ౯ =   ଶ௧ோౣሼଶோౣ ୱ୧୬ ఉିோౣ ୱ୧୬ ఏା|௒౰|(గିఏିଶఉ)ሽ௓౛ + (ோయିோమ)(ோయାோమ)ቀೃయశೃమమ ୱ୧୬ ఏା|௒౰|ఏቁ௓౛   (1) 

𝛽 =  ଵସ௧ோౣ ሼ2𝑡𝑅୫(𝜋 − 𝜃) + (𝑅ଷ − 𝑅ଶ)(𝑅ଷ + 𝑅ଶ)𝜃ሽ ൬1 − ఙఙౣ౯ ൰  (2) 

ఙఙౣ౯ =   ଶ௧ோౣ(గିఏିଶఉ)ା(ோయିோమ)(ோయାோమ)ఏଶ௧ோౣ(గିఏ)ା(ோయିோమ)(ோయାோమ)ఏ   (3) 

𝐼௭ = 𝑡𝑅୫ଷ ቀ𝜋 − 𝜃 − ଵଶ sin 2𝜃ቁ + ଵ଼ (𝑅ଷ + 𝑅ଶ)ଷ(𝑅ଷ − 𝑅ଶ) ቀ𝜃 + ଵଶ sin 2𝜃ቁ −ቆିଶ௧ோమౣ ୱ୧୬ ఏାభమ(ோయାோమ)మ(ோయିோమ) ୱ୧୬ ఏ ଶ௧ோౣ(గିఏ)ା(ோయିோమ)(ோయାோమ)ఏ ቇଶ ሼ2𝑡𝑅୫(𝜋 − 𝜃) + (𝑅ଷ − 𝑅ଶ)(𝑅ଷ + 𝑅ଶ)𝜃ሽ  
(4) 
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𝑍௘ =  𝐼௭𝑅ଷ + |𝑌௭| (5) 

 
where θ is the half notch angle, Rm is the average radius of the pipe, R1 is the outer radius of the pipe, 
R2 is the inner radius of the pipe, R3 is the curvature radius of the bottom of notch, Yz is the distance 
from the center to the centroid of the cross-section of the ligament, Ze is the section modulus in the 
ligament section, t is the pipe wall thickness, and σy is the yield stress of the pipe material. The 
theoretical plastic collapse limit curve of an austenitic stainless-steel pipe with a circumferential part-
through notch having a notch angle of 90° is shown in Fig. 2. The theoretical plastic collapse limit 
curve is used to determine the loading paths for the experiments and to evaluate the experimental 
plastic collapse stress and maximum stress. 

 

 
 

Fig. 2. Loading patterns through the target points for the part-through notched specimens. 

3. Experiment 

3.1 Specimen 
An austenitic stainless steel pipe (SUS 304) was used as a specimen. A schematic diagram of the 

specimens is shown in Fig. 3, and the mechanical properties are listed in Table 1. The specimen has a 
length of 110 mm, a diameter of 32.0 mm, and a thickness of 3.0 mm. A part-thorough notch with a 
depth of 1.5 mm and a notch angle of 90° was cut into the center of the specimen by wire electric 
discharge machining. Another type of specimen with a through-wall notch having a notch angle of 90° 
was made for comparison. The notch tip radius was 0.16 mm, and the notch width was 0.32 mm. The 
jigs were welded to both ends of the specimens. A schematic diagram of the specimen with the jigs is 
shown in Fig. 4. An air valve was attached to a jig, and a pressure gauge was attached the other jig. 
The part-through notched specimen was subjected to internal air pressure. The internal air pressure in 
the specimen was measured using a pressure gauge. The internal pressure decreased due to air leaking 
from the specimen when the crack extended from the notch tip to the inside of the pipe wall. The stress 
at the crack penetration point can be obtained as the stress at the air-leakage point. 
 

0.0 
0.0 
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(a) The specimen (austenitic stainless steel pipe)    (b) Two types of A-A cross section area 
 

Fig. 3. A part-through notched specimen and a through-wall notched specimen. 
 

Table 1. Mechanical properties of the pipe material. 
 

Yield stress 
[𝜎௬/MPa] 

Ultimate tensile strength 
[𝜎௨/MPa] 

262 606 
 

 
 

 
 

Fig. 4. Specimen setup. 
 

3.2 Testing Equipment 
Loading tests were carried out using statically indeterminate fracture mechanics testing equipment 

developed by our university [8]. A photograph and schematic diagram of the testing equipment are 
shown in Figs. 5 and 6, respectively. A load cell, a displacement gauge, and an actuator are installed 
in both the axial direction and the vertical direction in the testing equipment. The deflection angle is 
measured with two displacement gauges on top of the specimen. The testing equipment can apply 
arbitrary sequences of tension and bending to the specimen. The loading test can be carried out 
considering the load history by using this testing equipment. 

Both ends of the specimen are attached to the horizontal actuator and a horizontal load cell via the 
jig. A bending moment is applied to the specimen by four-point bending. The distances between the 
inner supports and between the outer supports are 70 mm and 384 mm, respectively. A roller is installed 
at the tip of inner support in order to prevent the influence of a frictional force caused by the friction 
between the specimen and the inner supports during the loading test. 
 

unit: mm. 
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Fig. 5. Photograph of the testing equipment for statically indeterminate fracture. 
 

 
 

Fig. 6. Schematic diagram of the testing equipment for statically indeterminate fracture 
mechanics. 

 
 
3.3 Procedures 

The tests were carried out under the following five load conditions through the target point, σm/σy, 
on the theoretical plastic collapse limit curve Fig. 2. 

(1) concurrent loading (CL), 
(2) tensile load followed by bending load (TB), 
(3) bending load followed by tensile load (BT), 
(4) pure tension (PT), and 
(5) pure bending (PB). 
The loading conditions of CL, TB and BT were determined with σm/σy = 0.3, 0.5 and 0.7 as target 

points on the theoretical plastic collapse limit curve. 
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Fig. 7. Load paths of the part-through notched specimen. 
 

The stress-displacement diagrams and the stress-deflection diagrams were made and the plastic 
collapse stress was obtained from the load-displacement diagrams using the double elastic deformation 
(DED) method [9,10]. The experimental plastic collapse stress of a part-through notched specimen is 
compared with the theoretical plastic collapse stress and the experimental plastic collapse stress of a 
through-wall notched specimen. 
 

 
 

Fig. 8. Internal pressure-time curve. 
 

The vertical and horizontal loads when the internal pressure began to decrease were used to calculate 
the membrane stress and bending stress at the crack penetration point. The crack penetration point was 
used to evaluate the validity of LBB. If the crack penetration stress occurs before the maximum stress, 
then the LBB is valid.  

4. Results and Discussion 
The actual loading paths are shown in Fig. 7. The arbitrary combined axial tensile and bending loads 

can be applied to the specimens through the target point using the developed test equipment. The 
internal pressure-time diagrams at the target point 0.7 and the loading paths for the CL, TB, and BT 
tests as typical pressure-time diagrams, are shown in Fig. 8. The abrupt lowering point of the internal 

0.0 
0.0 

0.0 
0.0 

Penetration 
0.7CL 

0.7TB 
0.7BT 
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pressure was observed for all testing conditions. The crack reached the inside of the pipe wall at the 
abrupt lowering point of the internal pressure. The internal pressure was slightly decreased before 
notch penetration because the internal volume of the specimen increased due to the loading test 

The membrane stress-axial displacement diagrams of the part-through notched specimen and the 
through-wall notched specimen for the 0.7 CL and 0.7 BT tests, as typical results, are shown in Figs. 9 
and 10. The bending stress-deflection angle diagram for the 0.7 TB test is shown in Fig. 11, as a typical 
result. The plastic collapse strengths of the through-wall notched specimen and the part-through notched 
specimen are obtained from the above diagrams using the DED method. In Figs. 9, 10, and 11, , , 
and  indicate the plastic collapse points determined by the DED method, the crack penetration points, 
and the maximum stress points, respectively.  

The plastic collapse strength of the part-through notched specimen was close to that of the through-
wall notched specimen, and the average error between the plastic collapse strengths was less than 10%. 
The plastic collapse strength of the part-through notched specimen could be estimated using the plastic 
collapse strength of the through-wall notched specimen under all test conditions. 

 

 
 

Fig. 9. Plastic collapse stress of through-wall and part-through notched specimens in the CL 
test (target point: 0.7). 

 

 
 

Fig. 10. Plastic collapse stress of through-wall and part-through notched specimens in BT 
test (target point: 0.7). 

0.0 
0.0 

0.0 
0.0 
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Fig. 11. Plastic collapse stress of through-wall and part-through notched specimens in the 
TB test (target point: 0.7). 

 
The membrane stress and bending stress of the part-through notched specimen decreased rapidly at 

the crack penetration point and increased for all loading conditions. Thus, LBB is valid under the 
combined tensile force and bending conditions considered in the present study because the crack 
penetration occurred in the stable fracture region.  

The stress at the crack penetration point (penetration stress) of the part-through notched specimen 
is compared with the maximum stress after the crack penetration under each loading condition (Table 
2). The following equation was used for calculation of the error value x: 

 𝑥 =  |ఙುିఙಾ|ఙು       (6) 
 

Table 2. Penetration stress and maximum stress after crack penetration of the part-through 
notched specimen. 

 

 
Penetration 

stress, 𝜎௉ [MPa] 

Maximum 
stress, 𝜎ெ [MPa] 

Error, 
x [%] 

0.3CL 1831 1668 8.87 
0.5CL 1115 1116 0.05 
0.7CL 482 436 9.58 
0.3BT 498 443 10.88 
0.5BT 492 468 4.84 
0.7BT 500 450 9.99 
0.3TB 1320 1234 6.52 
0.5TB 1457 1546 6.08 
0.7TB 1962 1948 0.81 

PT 501 475 5.06 
PB 877 749 11.55 

 
The penetration stress is close to the maximum stress after crack penetration, and the error between 

both stresses is less than 10% under most loading conditions. Therefore, the stress at the crack 
penetration point can be estimated using the same estimation formula of the maximum stress after 
crack penetration. 

0.0 
0.0 
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The penetration stress is estimated using the following estimation formula for the maximum stress: 
 

zm = 1.9y + (1 - m/y) y      (7) 
 

zb = 3.2f - (1 - m/y)(b/y)f     (8) 
 
where σf is the flow stress, which is the average of the yield stress and the tensile strength (Table 1). 
The penetration stress is plotted in Fig. 12, and theoretical plastic collapse limit curve and the 
estimation curve of the part-through notched specimen are also plotted in Fig. 12. The penetration 
stress is larger than the theoretical plastic collapse stress. On the other hand, the penetration stresses 
are distributed approximately along the estimation curve. Therefore, the penetration stress of the part- 
through notched specimen can be approximated using the estimation formula of the maximum stress 
under the loading conditions considered in the present study. 
 

 
 

Fig. 12. Estimation for the penetration stress of part-through notched specimens. 
 

 
 

Fig. 13. Maximum stress estimation of through-wall notched specimens and part-through 
notched specimens. 
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The maximum stresses of the through-wall notched specimen and the part-through notched 
specimen are plotted in Fig. 13. The theoretical plastic collapse limit curve and the estimation curve 
for the maximum stress of the part-through notched specimen are also shown in Fig. 13. The maximum 
stress of the part-through notched specimen is dispersed slightly outside that of the through-wall 
notched specimen under most loading conditions because the ligament area of the part-through notched 
specimen is larger than that of the through-wall notched specimen. On the other hand, both maximum 
stresses are dispersed approximately along the evaluation curve. Therefore, the maximum stress of the 
part-through notched specimen can be approximated using the same estimation formula of the 
maximum stress under the loading conditions of the present study. 

5. Conclusions 
In order to clarify the influence of load history on the validity of LBB for cracked austenitic stainless 

steel pipe subjected to a combined load of tension and bending, combined loading tests of axial force 
and bending were performed on stainless steel pipe with a single circumferential part-through notch 
with a notch angle of 90° and a notch depth of 50% of wall thickness. As a result, the following 
conclusions were obtained. 

1) The LBB concept is valid for austenitic stainless steel pipe with a single circumferential part-
through notch with a notch angle of 90° and a notch depth of 50% of wall thickness under all loading 
conditions. 

2) The penetration stress of the part-through notched specimen was approximately equal to the 
maximum stress after crack penetration and can be approximated using the estimation formula for the 
maximum stress. 

3) The plastic collapse strength and the maximum stress of a part-through notched pipe can be 
approximated using the plastic collapse strength and maximum stress of a through-wall notched pipe 
having the same notch angle. 
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