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Abstract. Analytical and experimental results are presented on nonlinear vibrations of a 
post-buckled beam with a stepped section constrained by an axial elastic spring. In the experiment, 
the beam is excited laterally under periodic acceleration, and the dynamic responses of the beam are 
measured. In the analysis, the beam is divided into a few segments. The deflection of the beam is 
expanded with the mode shape function that is expressed with the product of truncated power series 
and trigonometric functions. Taking the axial displacement, the deflections, slopes, bending moments 
and shearing forces at the nodes of the segments as unknown variables, nonlinear coupled ordinary 
differential equations are derived with the Galerkin procedure. Neglecting the axial inertia of the 
beam, the axial displacements at the nodes are expressed as nonlinear functions of the deflections, 
slopes, bending moments and shearing forces, nonlinear responses are calculated with the harmonic 
balance method and with the direct time integration. Fairly good agreements are obtained between 
results of experiment and analysis. 

1. Introduction

Recently, technology of a micro electro-mechanical system (MEMS) has been developed 
drastically. Micro devices such as an acceleration pickup and an optical scanner are widely utilized. 
These devices are composed with elements of thin elastic structures. The elements have complicated 
shape with discontinuous cross section like a stepped beam or combined configuration of beam and 
plate. When the thin beams are subjected to periodic force and large amplitude resonance are 
generated, nonlinear responses are easily generated [1]. Therefore, in this paper, both experimental 
and analytical results are presented on nonlinear vibrations of a stepped beam. The rectangular cross 
section of the beam is changed to H-shape at the mid span of the beam. One end of the beam is 
clamped and the other is simply supported. The beam is compressed to the post-buckled state by the 
spring in the axial direction. In the experiment, the beam is excited laterally under periodic 
acceleration, and the dynamic responses of the beam are measured. In the analysis, the beam is 
divided into a few segments. The deflection of the beam is expanded with the mode shape function 
that is expressed with the product of truncated power series and trigonometric functions [2]. Taking 
the axial displacement, the deflections, slopes, bending moments and shearing forces at the nodes of 
the segments as unknown variables, nonlinear coupled ordinary differential equations are derived 
with the Galerkin procedure. Neglecting the axial inertia of the beam, the axial displacements at the 
nodes are expressed as nonlinear functions of the deflections, slopes, bending moments and shearing 
forces, nonlinear responses are calculated with the harmonic balance method and with the direct time 
integration.  
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2. Procedure of Experiment

Fig. 1 shows the stepped beam and its fixture. A thin phosphor bronze beam with thickness
h=0.30 mm, breadth b=40 mm and length L=140 mm is clamped at one end and simply-supported at 
the other end. Four thin phosphor bronze beam (thickness 0.31 mm, breadth 4.9 mm, length 34 mm) 
are attached to the mid span of the beam, then the cross section is locally changed to H-shaped. At 
the simply-supported end, the beam is connected to an elastic plate by the strips of adhesive films. 
The elastic plate is clamped by the slide block and works as the axial spring. The beam is 
compressed by the axial spring, then the beam is deformed to the post-buckled configuration. To find 
fundamental properties of the beam, the linear natural frequencies and the restoring force are 
inspected. The post-buckled beam is excited laterally with an electromagnetic exciter. The beam is 
subjected to gravitational acceleration and periodic acceleration ad cos2πft, where f is the excitation 
frequency and ad is the peak amplitude of acceleration.  

Fig. 1. Beam and fixture 

3. Procedure of Analysis

Fig. 2 shows the analytical model of the post-buckled beam elastically constrained at an end. We
introduce the x and z axes along the axial and lateral directions of the beam, respectively. The origin 
is taken at the fixed end of the beam. The symbols L and K denote the length of the beam and the 
spring constant of the axial spring, respectively. The beam is divided into N=3 segments, two of 
which correspond to the parts with original rectangular cross section, the other corresponds to the 
part with H-shaped cross section.  

Fig. 2. Analytical model of a stepped beam 
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The local coordinate in the n-th segment xn is introduced which spans from xn =-1/2 to xn =1/2. 
The length, mass density, Young’s modulus, area and moment of a cross section of the n-th segment 
are expressed by ln, ρn, En, An and In, respectively. The beam is subjected to the static and periodic 
acceleration as+ad cosΩt. The deflection and axial displacement of the beam is expressed as W(x,t) 
and U(x,t), respectively. The beam is buckled with the initial axial displacement of the axial spring 
U0. For sufficiently thin beams, the axial inertia of beam itself, rotational inertia and shearing 
deformation can be neglected. The non-dimensional governing equation of the vibrations of the beam 
is expressed as follow, with the Hamilton’s principle. 

τo

τ1∫ Gw wn( )−1 2

1 2
∫ δwndξn + qxnδwn⎡⎣ ⎤⎦−1 2

1 2
− dnmxnδwn ,ξn
⎡
⎣

⎤
⎦−1 2

1 2
+ nxnδun⎡⎣ ⎤⎦−1 2

1 2⎡

⎣
⎢

⎤

⎦
⎥

n=1

N

∑
⎧
⎨
⎪

⎩⎪

+k u[N ] −u0( )δu[N ]}dτ = 0
(1a) 

Gw wn ,un( ) = dn−1ρn Anwn ,ττ −dnnxnwn ,ξnξn −dnmxn ,ξnξn −dn
−1ρnAn p−

1
dn
δ ξ −ξs( )qs       (1b) 

     nxn = dnEnAn u n⎡⎣ ⎤⎦
−u n−1⎡⎣ ⎤⎦( )+ 12 dn2EnAn wn ,ξn

2−w0n ,ξn
2( )dξn−1 2

1 2
∫ (1c) 

In the above equation, dn is defined as dn =L/ ln, the symbols wn, un, u0, nxn, sxn, mxn and qxn are 
non-dimensional deflection, axial displacement, initial axial displacement, axial force, slope, bending 
moment and shearing force, respectively. Non-dimensional lateral acceleration is denoted by 
p=ps+pdcosωτ, ω and τ are non-dimensional excitation frequency and time, k is the non-dimensional 
axial spring constant. A vector {wen} that consists of nodal deflection wn, slope sxn, bending moment 
mxn and shearing force qxn at the both nodes of the n-th segment is introduced, then the deflection wn 
in the n-th segment is expressed with the coordinate function {ζn}, following the similar manner of 
the finite element procedure. 
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In the above equations, {Zn}  is a vector composed of the mode shape function niZ  that is the 
product of truncated power series and trigonometric functions, [Zn] is a 8×8 matrix consists of niZ

and its first, second and third order derivatives, [D ] is a 8×8 matrix consists of parameters of the
 
 

n-th segment. Introducing the global nodal vector {
n
b̂} which includes the nodal vector {wen} of the 

all segments, and the vector{d̂}which consists of axial displacement of all nodes, and applying the 
Galerkin procedure, the nonlinear governing equation of the beam (Eq. (1)) is reduced to a set of 
ordinary differential equations as follows.
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Solving }ˆ{d in terms of }ˆ{b in Eq. (4), and then substituting it to Eq. (3), the axial displacements can
be removed in the reduced governing equation. Neglecting the time variant terms, static deflection 
due to the static lateral acceleration and the axial initial displacements is obtained. Next, the ordinary 
differential equation is transformed to the equation in terms of the dynamic variable !bj  which is 
measured from the static equilibrium position. Furthermore, the ordinary differential equations are 
transformed to the standard form in terms of normal coordinates bi corresponding to the linear 
natural modes of vibration jζ

~
 at the static equilibrium position of the beam. Dynamic responses 

can be calculated with the harmonic balance method and the numerical integration. 

4. Results and Discussion

Equivalent moment of cross section of the H-shaped part and the initial deflections are identified
by comparing the experimental and analytical results of the post-buckled deformation (Fig. 3) and 
characteristics of restoring force under a concentrated lateral force on the beam (Fig. 4), for three 
conditions of the magnitude of axial compressive force. Fig. 5 shows the nonlinear frequency curves 
of the beam comparing the analytical and experimental nonlinear responses. In the figure, the black 
and gray curves are the stable and unstable periodic responses, respectively, calculated by the 
harmonic balance method. The principal resonance (1:1) and the sub-harmonic resonance (1:1/2) of 
the order 1/2 of the lowest mode appear corresponding to the softening-and-hardening characteristics 
of the restoring force. The results of direct numerical integration, shown with the blue curves, almost 
follow the stable periodic responses. Decreasing the no-dimensional exciting frequency ω from 
ω=35.00, the sub-harmonic resonance response (1:1/2) is bifurcated from the non-resonant response, 
at ω=28.00. The amplitude of the sub-harmonic resonance transits to the non-resonant response by a 
jump phenomenon at ω=20.67. As the frequency is decreased, the non-resonant response transits to 
the large amplitude of the principal resonance by a jump phenomenon at ω=11.35. 

Fig. 3. Post-buckled deformation 
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Increasing the frequency from ω=11.35 at the large amplitude of the principal resonance, the large 
amplitude of the principal resonance transits to the non-resonant response by a jump phenomenon at 
ω=16.90. The red curves in the figure presents the experimental results. Fairly good agreements are 
obtained between experimental and analytical periodic responses. 

Fig. 4. Characteristics of restoring force 

Fig. 5. Nonlinear frequency response curves 

5. Conclusion

Analytical and experimental results are presented on nonlinear vibrations of a post-buckled beam 
with a stepped section constrained by an axial elastic spring. In the experiment, the beam is excited 
laterally under periodic acceleration, and the dynamic responses of the beam are measured. In the 
analysis, the beam is divided into a few segments. The deflection of the beam is expanded with the 
mode shape function that is expressed with the product of truncated power series and trigonometric 
functions. Taking the axial displacement, the deflections, slopes, bending moments and shearing 
forces at the nodes of the segments as unknown variables, nonlinear coupled ordinary differential 
equations are derived with the Galerkin procedure. Neglecting the axial inertia of the beam, the axial 
displacements at the nodes are expressed as nonlinear functions of the deflections, slopes, bending 
moments and shearing forces, which decreases the computational cost considering the coupling 
between deflection and axial deformation. Fairly good agreements are obtained between results of 
experiment and analysis, which verifies the present analysis. 
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