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Abstract. This paper reports numerical analysis using FEM with Model Strain Energy Method for 

structures having a T-shaped cross section supported by nonlinear concentrated springs under impact 

load. An edge of the rib plate in the T-shaped structure has an Acoustic Black Hole with residual 

thickness. A viscoelastic damping layer is covered on the black hole. Finite element for the nonlinear 

springs with hysteresis are expressed and are connected to the T-shaped structures modeled by linear 

solid finite elements in consideration of complex modulus of elasticity. We calculated modal loss 

factors and transient responses using eigenmodes including coupled motions between the nonlinear 

springs and the T-shaped structures. From the dominant modes and the impact responses, we clarified 

effects of the black hole with residual thickness on the nonlinear damped responses. By adding the 

black hole to the structures, modal loss factors increase. Higher modal loss factors are obtained due to 

set the residual thickness. As the amplitude of the impact force increases, the responses become 

complicated due to the nonlinearity, and include more super harmonic and subharmonic components. 

The nonlinear components are reduced by adding the black hole. The less nonlinear components are 

given due to set the residual thickness. 

1. Introduction 

Recently, some researchers have been studying acoustic black holes as an effective approach of 

vibration damping or vibration reduction. A concept was proposed by Mironov [1] to realize small 

amplitudes in structures using an acoustic black hole in case of the resonance. Mironov studied 

propagations of bending waves in a flat plate having an edge where the thickness of the plates is 

decreasing to the edge as a quadratic function x2 of the distance x from the boundary. Due to this 

structure, the bending waves cannot reflect at the edge. However, to obtain vibration reduction effects 

using Mironov’s acoustic black hole, it is required that the length of the edge is enough long. At the 

edge, extraordinary thin thickness is necessary. This results in the acoustic black hole is ideal and 

cannot be applied in practical use. To improve this problem, Krylov modified the Mironov’s acoustic 

black hole [2]-[5]. He cut off the edge practically as finite length. He also added a thin viscoelastic 

damping layer on the top of the edge. This Krylov’s acoustic black hole has high damping with light 

weight. On the other hand, Oberst [6] theoretically analyzed vibration damping effects of a straight 

metal beam covered with a viscoelastic layer. He revealed that the effects of the damping layer are 

proportional to (thickness of the damping layer/ thickness of the metal beam)2. The thickness of the 

edge in the black hole is extraordinary thin. If a viscoelastic damping layer is laminated on the edge in 

the black hole, high efficient damping effects appear. The length of the edge in the black hole can be 
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shortened with keeping the vibration reduction. To obtain damping effects in the lower frequency 

region, Tang proposed “Residual thickness” [7]. The residual thickness means that the edge is extended 

as minimum thickness keeps after the thickness decreases according to the power function for the 

acoustic black hole. Nevertheless, these structures having the acoustic black holes have local regions 

including extraordinary thin thickness. Thus, when we try to add these acoustic black holes to actual 

structures in practical use, it contains difficulties due to the weakness of thin thickness for strength of 

the structure, as shown in Fig.1(a). To solve this problem, we proposed that around the edges of beads 

or ribs in panels, height of the bead or rib decreases according to the power functions for the acoustic 

black hole, as shown in Fig.1(b) [8]. This enable us that it is not necessary to use the extraordinary thin 

thickness in the local regions of the panels with the acoustic black holes. 

 

 
 

Fig.1. Problems in strength at the edges around acoustic black holes and proposition of new 
acoustic black hole. 
 

On the other hand, vibration isolation using concentrated springs have been used to protect 

lightweight structures from undesirable impacts. But, these lightweight structures sometimes do not 

have high rigidity. For these cases, the structures should be regarded as elastic bodies. When the 

structures for isolation are constituted of polymer materials, these structures are necessary to consider 

as viscoelastic bodies. Further, some concentrated springs have nonlinear relations between 

displacement and load. Thus, we have been studying dynamics for the coupled problem between elastic 

bodies and viscoelastic bodies and nonlinear springs using finite element method including normal 

coordinates corresponding to linear natural modes. 

Many researchers have been studying the nonlinear vibration problems for systems including 

concentrated mass and concentrated spring. Freeny investigated Proper Orthogonal Modes for this 

system [9]. Shaw proposed Nonlinear Modal Analysis and applied to a simply supported beam attached 

to a nonlinear concentrated spring at midpoint of the beam [10]. Yamaguchi et. al. [11-13] previously 

proposed a fast computation method to obtain the nonlinear vibrations in an elastic block or a 

viscoelastic block or a sound-proof structure supported by a nonlinear concentrated spring with linear 

hysteresis. 

Nevertheless, dynamics for structures having acoustic black holes with viscoelastic layers 

connected with nonlinear springs have not been clarified yet. 

To evaluate effects of the acoustic black holes on reduction of nonlinear vibration, this paper deals 

with vibration analysis using finite element method for T-shaped structures having acoustic black holes 

connected with nonlinear concentrated spring under impact loads. The structure includes a T-shaped 

cross section. Around the edge of the rib plate in the T-shaped structures, the height of the rib decreases 
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according to the function for the Krylov’s acoustic black hole. We also examine effects of addition of 

the residual thickness. A viscoelastic damping layer is covered on the regions around the black hole. 

The restoring force of the nonlinear springs is assumed to be expressed as power series of displacement. 

The restoring force has linear hysteresis damping. Therefore, complex stiffness is introduced for the 

linear component of the restoring force. Finite elements for the nonlinear springs are expressed and 

are connected to the T-shaped structures having the acoustic black holes with viscoelastic layers 

modeled by linear solid finite elements. The discrete equations in physical coordinate are transformed 

into the nonlinear ordinary coupled equations using normal coordinate corresponding to linear natural 

modes [11-13]. In this process, modal damping is also transformed using Modal Strain Energy Method. 

The transformed equations in the normal coordinates are integrated numerically in small degree-of 

freedom.  

We calculate modal loss factors and transient responses using eigenmodes including coupled 

motions between the nonlinear springs and the T-shaped structures having the acoustic black holes. 

From the dominant modes and the time histories, we clarify effects of the acoustic black hole with / 

without residual thickness on the nonlinear damped responses. 

2. Calculation Models 

To examine effects of the acoustic black holes on reduction of nonlinear vibration, we use three 

calculation models as shown in Figs. 2, 3 and 4. Figure 2 shows FEM model for a T-shaped structure 

having flanges and a rib. Then, this structure includes a T-shaped cross section. The height of the rib 

is 50 [mm]. Thickness of the two flanges are 5.04 mm. 
 

 
 

Fig. 2. FEM model for T-shaped structure without acoustic black hole and viscoelastic layer. 
 

 
 

Fig. 3. FEM model for T-shaped structure having acoustic black hole with viscoelastic layer. 
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Fig. 4. FEM model for T-shaped structure having acoustic black hole with viscoelastic layer 
(Including residual thickness). 
 

  
 

(a) Boundary condition 
 

(b) Observation and excitation points 
 

Fig.5 Boundary condition and observation point and excitation point 
 

This structure is connected with two nonlinear concentrated springs in y-direction as can be seen 

in Fig.2. And in x- and z- directions, linear springs are attached at the same points. Here, note that the 

nonlinear and linear springs are attached to the symmetrical position in Fig.2 about the x-axis. An 

impact loads are exerted to get nonlinear responses. As shown in Fig.3, we give the new acoustic black 

holes at one edge of the rib in the T-shaped structures. Around the edge of the rib plate, the height h(x) 

of the rib decreases according to the function h(x)=εx2.2 for the Krylov’s acoustic black hole. Where, 

x is the distance from the edge. A viscoelastic damping layer is covered on the regions around the black 

hole and on the flanges. Thickness of the damping layer is 10 [mm]. We added residual thickness to 

the new T-shaped structure having the acoustic black hole in Fig.4. The length of the region having 

residual thickness is 45 [mm]. One end of these T-shaped structures are fixed as shown in Fig. 5(a). 

The excitation point and observation point are illustrated in Fig. 5(b). 

3. Calculation Procedure 

3.1. Discretized Equation for Nonlinear Concentrated Spring with Linear Hysteresis 

As shown in Figs. 2, 3 and 4, we assume that nonlinear concentrated springs with hysteresis have 

principal elastic axis in y direction. We denote displacement as 𝑈𝑚𝑦(𝑚 = 1,2) in y-direction at the m-

th nodal point where the nonlinear concentrated springs are connected with the T-shaped structure 
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having acoustic black hole in the one edge. Nonlinear function using power series is given for nodal 

force at the points m (𝑚 = 1,2). Therefore, the restoring force of the spring is expressed as 𝑅𝑚𝑦 =

𝛾1𝑚𝑦𝑈𝑚𝑦 + 𝛾3𝑚𝑦𝑈𝑚𝑦
3  when we consider cubic nonlinearity with the hardening characteristics as 

shown in Fig. 6. Further, linear hysteresis damping [11]-[13] is introduced as 𝛾1𝑚𝑦 = 𝛾̅1𝑚𝑦(1 + 𝒋𝜂𝑠) ，

𝛾̅1𝑚𝑦  is the real part of  𝛾1𝑚𝑦, and  𝜂𝑠 is the material loss factor of the concentrated spring. j is the 

imaginary unit. These relations can be rewritten in the matrix form as: 

 

       {𝑟𝑚} = [𝛾̅1𝑚]{𝑈𝑠} + {𝑑̅𝑚}                             (1)  

{𝑟𝑚} = {𝑟𝑚𝑥, 𝑟𝑚𝑦, 𝑟𝑚𝑧}
T
，𝑟𝑚𝑥 = 𝑟𝑚𝑧 = 0, {𝑈𝑠} = {𝑈𝑚𝑥, 𝑈𝑚𝑦, 𝑈𝑚𝑧}

T
， {𝑑̅𝑚} = {0, 𝛾3𝑚𝑦𝑈𝑚𝑦

3 , 0}
T
. 

Where, {𝑟𝑚} is nodal force vector at the node m(𝑚 = 1,2). {𝑈𝑠} is the nodal displacement vector 

at the node m. [𝛾̅1𝑚] is the complex stiffness matrix involving only linear term of the restoring force. 

{𝑑̅𝑚} is the vector containing nonlinear terms of the restoring force. In this paper, we set the 

restoring force with cubic nonlinearity as shown in Fig. 6. 
 

 
 

Fig. 6. Restoring force of nonlinear springs. 
 

3.2 Discretized Equation of T-shaped Structure Having Acoustic Black Hole with Viscoelastic 

Layer 

We assumed that equations of motion for the T-shaped structure having the acoustic black hole 

with the viscoelastic layer are expressed under infinitesimal deformation. Vibration damping of the 

metal structure having the acoustic black hole is taken into account using complex modulus of 

elasticity𝐸𝑠𝑡 = 𝐸𝑠𝑡
̅̅ ̅̅ (1 + 𝒋𝜂𝑠𝑡). The real part 𝐸𝑠𝑡

̅̅ ̅̅  of the 𝐸𝑠𝑡 stands for the storage modulus of elasticity, 

while 𝜂𝑠𝑡   is the material loss factor of the metal structure. In the same manner, vibration damping of 

the viscoelastic layer on the black hole is considered as 𝐸𝑣𝑖𝑠 = 𝐸𝑣𝑖𝑠
̅̅ ̅̅ ̅(1 + 𝒋𝜂𝑣𝑖𝑠). By superposing all 

elements related to the structure, the following equations in the entire domain of the T-shaped structure 

having acoustic black hole with the viscoelastic layer are obtained: 

 

[𝑀𝑝]{𝑈𝑝̈} + [𝐾𝑝]{𝑈𝑝} = {𝑓𝑝}                        (2) 

 

Where, [𝑀𝑝], [𝐾𝑝], {𝑓𝑝} and {𝑈𝑝}are the mass matrix, the complex stiffness matrix, the nodal 

force vector and the displacement vector, respectively. Isoparametric hexahedral elements with non- 

conforming modes [15] are mainly used for the numerical computation. 
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3.3 Discrete Equation for Combined System between T-shaped Structure Having Acoustic 

Black Hole and Nonlinear Concentrated Springs 

The restoring force {𝑟𝑚} in Eq. (1) is added to the nodal force at the attached nodes m (𝑚 = 1,2) 

between the concentrated springs and the T-shaped structure. And then the following expression in 

global system can be obtained: 
 

            [𝑀]{𝑈̈} + [𝐾]{𝑈} + {𝑑̂} = {𝑓}                            (3) 
 

   Where, }{u , ][M , ][K , }{ f are the displacement vector, the mass matrix, the complex stiffness 

matrix and the external force vector in global system, respectively. }ˆ{d is modified from {𝑑̅𝑚} to 

have the identical vector size to degree- of- freedom of the Eq.(3). 

3.4 Approximate Expression for Modal Damping [14]-[19] 

By neglecting both the nonlinear term and the external force vector from Eq. (3), we can get the 

following complex eigenvalue problem: 
 

∑ ([𝐾𝑅]𝑒(1 + 𝒋𝜂𝑒) − (𝜔(𝑖))
2

(1 + 𝒋𝜂tot
(𝑖)

)[𝑀]𝑒) {𝜙(𝑖)∗
} = {0}

𝑒max

𝑒=1

            (4) 

 

In this equation, superscript (i) stands for the i th eigenmode. (𝜔(𝑖))
2
is the real part of complex 

eigenvalue. {𝜙(𝑖)∗
} is the complex eigenvector and 𝜂tot

(𝑛)
 is the modal loss factor. [𝐾𝑅]𝑒 is the real 

part of the element stiffness matrix. 

Next, we introduce the following parameters 𝛽𝑒: 
 

  𝛽𝑒 =
𝜂𝑒

𝜂max
，𝛽𝑒 ≦ 1                               (5) 

 

  𝜂max is the maximum value among the elements' material loss factors 𝜂𝑒, (e =1,2,3,..., 𝑒max). On 

assumption of  𝜂max ≪ 1, solutions of Eq. (4) are expanded using a small parameter 𝜇 = 𝒋𝜂max: 
 

    {𝜙(𝑖)∗
} = {𝜙(𝑖)}

0
+ 𝜇{𝜙(𝑖)}

1
+ 𝜇2{𝜙(𝑖)}

2
+ ⋯ ⋯                    (6) 

 

    (𝜔(𝑖))
2

= (𝜔0
(𝑖))

2
+ 𝜇2(𝜔2

(𝑖))
2

+ 𝜇4(𝜔4
(𝑖))

2
+ ⋯ ⋯                 (7) 

 

    𝒋𝜂tot
(𝑖) = 𝜇𝜂1

(𝑖) + 𝜇3𝜂3
(𝑖) + 𝜇5𝜂5

(𝑖) + ⋯ ⋯                    (8) 
 

 In these equations, under conditions of 𝛽𝑒 ≦ 1 and 𝜂max ≪ 1, we can obtain 𝜂max𝛽𝑒 ≪ 1. Thus, 

𝜇𝛽𝑒 is regarded as small parameter like 𝜇. In the equations, {𝜙(𝑖)}
0
，{𝜙(𝑖)}

1
，{𝜙(𝑖)}

2
，... and (𝜔0

(𝑖))
2
，

(𝜔2
(𝑖))

2
，(𝜔4

(𝑖))
2
,...and 𝜂1

(𝑖)，𝜂3
(𝑖)，𝜂5

(𝑖), ... have real quantities. Some parts of the mathematical 

procedures using Eqs. (5), (6), (7) and (8) are basically proposed by Ma [15] for linear problem having 

one viscoelastic material. We extended the procedures to general problem including multiple 

viscoelastic materials. 

Substituting these equations from Eq. (6) to Eq. (8) into Eq. (4) yields the successive equations 

that the asymptotic solutions must satisfy: 
 

 𝜇0 order: 

∑ ([𝐾𝑅]𝑒 − (𝜔0
(𝑖))

2
[𝑀]𝑒) {𝜙(𝑖)}

0

𝑒𝑚𝑎𝑥

𝑒=1

= {0}                                                (9) 
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𝜇1order: 

∑ (𝜇𝛽𝑒[𝐾𝑅]𝑒 − 𝜇𝜂1
(𝑖)(𝜔0

(𝑖))
2

[𝑀]𝑒) {𝜙(𝑖)}
0

𝑒𝑚𝑎𝑥

𝑒=1

+ ∑ (𝜇[𝐾𝑅]𝑒 − 𝜇(𝜔0
(𝑖))

2
[𝑀]𝑒) {𝜙(𝑖)}

1

𝑒𝑚𝑎𝑥

𝑒=1

= {0} (10) 

 

Furthermore, by arranging Eq. (9) and Eq. (10), the following equation can be derived: 
             

𝜂tot
(𝑖) = ∑ (𝜂𝑒𝑆𝑒

(𝑖))

𝑒𝑚𝑎𝑥

𝑒=1

， 𝑆𝑒
(𝑖) =

{𝜙(𝑖)}
0

𝑇
[𝐾𝑅]𝑒{𝜙(𝑖)}

0

∑ {𝜙(𝑖)}0
𝑇

[𝐾𝑅]𝑒{𝜙(𝑖)}0
𝑒max
𝑒=1

                          (11) 

 

According to these expressions, modal loss factor 𝜂tot
(𝑖) can be calculated using material loss 

factors 𝜂𝑒 of each element e  and share 𝑆𝑒
(𝑖)

of strain energy of each element to total strain energy. 

The eigenmodes {𝜙(𝑖)}
0
 in Eq. (11) are real. Therefore, the eigenmodes can be easily obtained by 

solving familiar real eigenvalue problem Eq. (9), which corresponds to the equation by deleting all 

damping term in Eq. (4). Equation (11) has identical formation to Modal Strain Energy Method [14]-

[19], resultantly. 

3.5 Conversion from the Discretized Equation in Physical Coordinate to the Nonlinear Equation 

in Normal Coordinate 

It takes large amount of computational time to calculate Eq. (3) in physical coordinate, directly. In 

this section, a numerical manipulation is carried out to decrease the degree-of-freedom for the 

discretized equations of motion [11]-[13]. 

  First, we assume that linear natural modes {𝜙(𝑖)}  of vibration can be approximated to {𝜙(𝑖)}
0
. 

Next, by introducing normal coordinates 𝑏̃𝑖 corresponding to the linear natural modes {𝜙(𝑖)}
0
, the 

nodal displacement vector  {𝑈}  can be expressed using both {𝜙(𝑖)}
0
 and 𝑏̃𝑖  as follows. 

 

{𝑈} = ∑ 𝑏̃𝑖

𝑖

{𝜙(𝑖)}
0

                                                                  (12) 

                                     

Substitution of Eq. (12) into Eq. (3) yields the following nonlinear ordinary simultaneous 

equations as to normal coordinates ib
~

 as: 

 

  𝑏̈̃𝑖 + 𝜂tot
(𝑖)

𝜔(𝑖)𝑏̇̃𝑖 + (𝜔(𝑖))
2

𝑏̃𝑖 + ∑ ∑ ∑ 𝐸̃𝑖𝑗𝑘𝑙𝑏̃𝑗𝑏̃𝑘𝑏̃𝑙𝑙𝑘𝑗 − 𝑃̃𝑖 = 0     (13) 
 

𝐸̃𝑖𝑗𝑘𝑙 = ∑ 𝛾3𝑚𝑦𝜙̃𝑖𝑚𝑦𝜙̃𝑗𝑚𝑦𝜙̃𝑙𝑚𝑦

2

𝑚=1

, 𝑃̃𝑖 = {𝜙(𝑖)}
0

𝑇
{𝑓}                                     (14) 

                       (𝑖, 𝑗, 𝑘, 𝑙 = 1,2,3, … ) 
 

   Since Eq. (13) has much smaller degree-of-freedom than that of Eq. (3), computational time 

become less. 𝜙𝑖𝑚𝑦 is the y-component of the eigenmode {𝜙(𝑖)}
0
at the connected node m between the 

T-shaped structure having the acoustic black hole and the nonlinear concentrated spring. In this 

analysis, 𝜂tot
(𝑖) is derived using the shares of strain energy on condition of linear small amplitude as 

described in Section 3.4.  

 By applying Runge-Kutta-Gill to Eq. (13), nonlinear impulse responses were calculated. In this 

numerical integration, an impulse was given for the force vector }{ f  in Eq. (13) at the node β, which 

corresponds to the excitation point. 
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4. Results and Discussion 

4.1 Validity of Computation Method for a Flat Plate Having Krylov’s Acoustic Black Hole. 

We reported [20] that damped vibration responses for a flat plate with the Krylov type acoustic 

black hole using our codes and our MSKE method with 3D FEM. In that report, we compared between 

Krylov’s experiment [5] and our numerical results to check the validity. In the edge of the panel with 

the black hole, the function of decreasing thickness ℎ(𝑥) was ℎ(𝑥)=ε𝑥𝑚 (𝑚=2.2), where x was distance 

from the edge. This function was same with that of the T-shaped structure in this paper. From these 

results, our computation could reproduce the black hole effects in the past experiment. 

4.2 Modal Loss Factors from Eigen Value Analysis with MSE Method 

Figure 7 represents comparison of modal loss factors with /without the acoustic black hole and the 

residual thickness and the viscoelastic layer. The ordinate is the modal loss factor, while the abscissa 

is the mode ID having similar deformations among three models for the T-shaped structures. As can 

be seen in this figure, by adding the acoustic black hole to the T-shaped structures, modal loss factors 

significantly increase. Further, modal loss factors of some modes become higher due to set the residual 

thickness. 
 

 
 

Fig. 7. Comparison of modal loss factors with /without acoustic black hole and residual 
thickness and viscoelastic layer. 

4.3 Results of Impact Responses 

To investigate influences of nonlinear coupling in vibration among the T-shaped structures having 

the acoustic black holes and the nonlinear springs, we studied nonlinear vibration phenomena under 

impact force. Figure 8 represents an evaluation flow of impact responses. 

An impact pulse in the y-direction shown in Fig. 8 is given for the force vector {f} of 𝑃̃𝑖 in Eq. 

(13) at the node β, which is excitation point as we specified in Fig. 5. Time histories of the nonlinear 

impact responses are calculated by applying Runge-Kutta-Gill method to Eq. (13). We compute 

nonlinear transient time histories by varying the maximum amplitude |fmax| of the impact under a 

constant pulse width 0.001 [s]. And we calculate displacement w at the evaluation point shown in Fig. 

5. Figures 9, 10 and 11 show the frequency response functions of the time histories under the small 

impact force |fmax| = 9.8[N]. In Figs. 9, 10 and 11, the abscissa shows Fourier frequency ωsp, while the 

ordinate represents amplitude of frequency response function A(ωsp). For A(ωsp), 0 [dB] represents that 

the amplitude of the spectrum equals 1 mm. 
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Fig. 8. Evaluation flow of impact responses for T-shaped structures. 
 

     
 

Fig. 9. Impact response for T-shaped structure with no acoustic black hole and viscoelastic 
layer under small force amplitude. 
 

 
 

Fig. 10. Impact response for T-shaped structure with acoustic black hole and viscoelastic 
layer under small force amplitude. 
 

Under the small input force |fmax|= 9.8 N in Figs. 9, 10 and 11, some eigenmodes corresponding to 

the typical peaks in the frequency response functions are written. These modes include the large 

deformations in the nonlinear springs. In Fig. 9, the peaks of the modes 1, 3 and 6 appear. In Fig. 10, 

the peaks of the modes 1, 3 and 7 appear. In Fig. 11, the peaks of the modes 1, 3 and 5 appear. However, 

we cannot find out nonlinear responses in Figs. 9, 10 and 11 because of the small impact force. 
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Fig. 11. Impact response for T-shaped structure with acoustic black hole and viscoelastic 
layer including residual thickness under small force amplitude. 

 

 
 

Fig. 12. Influences of force amplitudes on impact response for T-shaped structure with no 
acoustic black hole and no viscoelastic layer. 
 

For the case without the black hole and without the viscoelastic layer in Fig. 9, all resonances have 

sharp peaks because of low damping. For the case with the black hole and with the viscoelastic layer 

in Fig. 10, amplitudes of resonance peaks decrease in comparison with those in Fig. 9 due to high 

damping. Especially, amplitudes of the peaks in the higher frequency decrease much more because the 

damping effects of the black hole increase. For the case with the black hole including the residual 

thickness and with the viscoelastic layer in Fig. 11, amplitudes of the peaks reduce more than those in 

Fig. 10. This phenomenon is caused by adding the residual thickness. 

As excitation force increases for the T-shaped structure with no acoustic black hole and no 

viscoelastic layer, new peaks are appeared as shown in Fig. 12. We can observe the generation of the 

super-harmonic components and the sub-harmonic components of the peaks corresponding to the 

modes having large deformations in the nonlinear springs. 

Figure 13 corresponds to the frequency response functions of the time histories under the large 

impact force |fmax| = 980 N for the T-shaped structures with / without the acoustic black hole and 
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viscoelastic layer and residual thickness. As we can see, the nonlinear components decrease when the 

acoustic black holes are added to the T-shaped structure. Further, if the residual thickness is set to the 

acoustic black hole, the nonlinear components are much more reduced. 
 

 
 

Fig. 13. Nonlinear impact responses for T-shaped structures with/without acoustic black hole 
and viscoelastic layer and residual thickness under large force amplitude. 
 

We will continue to study the basic characteristics of these new structures using our proposed 

acoustic black hole. After more investigations under many conditions, we will clarify merits and 

practical limitations. 

5. Conclusions 

To clarify nonlinear vibration characteristics of T-shaped structures having acoustic black holes with 
viscoelastic damping layers supported by nonlinear springs, we compute nonlinear transient responses. 
We added acoustic black hole at one edge of the T-shaped structure. We give the new acoustic black 
holes at one edge of the rib in the T-shaped structures. Around the edge of the rib plate, the height of 
the rib decreases according to the function for the Krylov’s acoustic black hole. We clarified influences 
of amplitude of the impact force on nonlinear transient responses for the structure. Effectiveness of 
acoustic black holes are investigated to decrease nonlinear vibration under large force amplitudes. By 
adding the acoustic black hole to the T-shaped structures, modal loss factors increase. Higher modal 
loss factors are obtained due to set the residual thickness. As the amplitude of the impact force increase 
on the T-shaped structure with no acoustic black hole and viscoelastic damping layer, the responses 
become complicated due to the nonlinearity, and include more super harmonic and subharmonic 
components. These nonlinear components are reduced by adding the acoustic black hole. The much 
less nonlinear components are given due to set the residual thickness. 
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