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Abstract. Noise reduction is an important technology to obtain comfort environment. In this report, 

we perform numerical computation of sound radiation from a structure containing a porous layer 

sandwiched by double walls. The cover plate in the double walls has a Krylov type acoustic black hole. 

All edges in the cover plate where the black hole exists, are set as free boundaries. Viscoelastic 

damping material is laminated on the top of the black hole. Numerical analysis is carried out to 

investigate sound radiation from this structure using FEM and MSKE method which is proposed by 

Yamaguchi et al. 

 

1. Introduction 

With Double walls having a porous layer are well-known effective approach to decrease noise due 

to sound radiation from vibrations in panels. Many researchers have been studied about these 

structures. In this paper, we call two plates in the double walls as base plate and cover plate. 

On the other hand, some researchers have been investigated acoustic black holes as an effective 

approach of vibration reduction [18]. This concept was proposed by Mironov [1]. Mironov studied 

vibration propagations of bending waves in a flat plate having an edge where the thickness of the plates 

decreasing to the edge as a quadratic function x2 of the distance x from the boundary. Due to the black 

hole, it is difficult that the bending waves reflect at the edge. Mironov called this structure as acoustic 

black hole. But, to obtain sufficient vibration reduction effects, it is necessary that the length of the 

edge is enough long. At the edge, the thickness is too thin to compensate the strength of the structures. 

To improve this, Krylov proposed to modify the Mironov’s acoustic black hole [2]-[5] by cutting off 

the edge practically as finite length. Further, Krylov added a thin viscoelastic damping layer on the 

edge. According to Oberst theory [6], vibration damping effects of a straight metal beam covered with 

a viscoelastic layer are proportional to (thickness of the damping layer/ thickness of the metal beam)2. 

Thus, high efficient damping effects appear when a viscoelastic damping layer is covered on the edge 

in the black hole because of thin thickness around the black holes.  

In this paper, we investigate effects of adoption of the acoustic black hole to the cover plate in the 

double walls on sound radiation. To evaluate effects of the acoustic black holes, we carry out vibration 

damping analysis and sound radiation analysis after vibration response analysis using finite element 

method for structures having acoustic black holes in the double walls under dynamic loads. We 

computed modal loss factors, vibration responses. By using these results, we calculated acoustic 

radiation power from the cover plate. 
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2. Calculation Model 

To investigate effects of the acoustic black holes on reduction of sound radiation in the double 

walls having a porous layer, we use calculation models as shown in Figs. 1 and 2.  
 

 
 

Fig. 1. FEM model including cover plate without acoustic black hole (Model 1). 
 

 
 

Fig. 2. FEM model including cover plate with acoustic black hole having viscoelastic layer 
(Model 2). 
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Fig. 3. Boundary conditions. 
 

As shown in Fig.1, the double walls have a steel base plate and a steel cover plate denoted as 

“model 1”. A porous layer is sandwiched between the base plate and the cover plate. Thickness of the 

base plate is 5.04mm, and thickness of the cover plate is also 5.04mm. the thickness of the porous layer 

is 11.25mm. As shown in Fig.2, the Krylov’ type acoustic black hole is added to one of edges in the 

cover plate. Around the edge of the cover plate, the thickness h(x) of the plate decreases according to 

the function h(x)=εx2.2 for the Krylov’s acoustic black hole . Where, x is the distance from the edge. 

A viscoelastic damping layer is covered on the regions around the black hole. Thickness of the 

viscoelastic damping layer is 1.0mm. Geometry of the cover plate is same as the plate in the Krylov’s 

experiment [5]. The boundary conditions are denoted in Fig.3.  

Around the cover plate, all edges are set as free. All edges around the base plate are also set as free. 

For the porous layer, all sides have rigid wall. At the boundaries between the solid bodies (i.e. the base 

plate and the cover plate) and the porous layer, the normal components of the displacements to the 

boundaries are continuous. On the other hand, the tangential components of the displacements along 

the boundaries are independent.   

As illustrated in Fig.4, the excitation point is set at 5 mm away in z-direction from the center of 

the base plate. At this point, white noise is given as input wave. 

 

 
 

Fig. 4. Excitation point. 
 

3. Calculation Procedure 

To consider the mixed problem containing arbitrary shapes and arbitrary boundary conditions, the 

porous body, the solid bodies are modeled using finite elements for the double walls having the porous 

layer and the acoustic black hole. To evaluate modal loss factors of the coupled mixed structures, we 

use MSKE method [7]-[11]. Further, we compute vibration responses and sound radiation. 

(a) Cover plate: 
Free at all edges 

(b) Porous layer: 
All sides have rigid wall 

(c) Base plate: 
free at all edges 

Excitation 
Point 

Excitation 
Point 
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3.1 Discrete Equations in Porous Layer  

For the internal air in the porous layer, we use a finite element model as shown in this section. 

Considering periodic oscillation and infinitesimal amplitude, the equations of motion can be written 

for inviscid compressive perfect fluid as follows.  

                 

−grad 𝑝 = −𝜌𝑒𝜔2{𝑢𝑓}                               (1) 

 

The continuity equation is shown as:  

 

    𝑝 = −𝐸𝑒div{𝑢𝑓}                                      (2) 

 

{𝑢𝑓} is the particle displacements vector. p denotes sound pressure.  represents the effective 

density of the internal air. E represents the modulus of volume elasticity of the internal air.   is the 

angular frequency. Here, the particle displacements {𝑢𝑓}  are chosen as unknowns [7]-[11] by 

eliminating the sound pressure p in Eqns. (1) and (2). The displacement is chosen as the common 

unknown variable for the double walls structure with acoustic black hole. 

 We approximate the relation between {𝑢𝑓} and particle displacement vectors {𝑢𝑓𝑒} at nodal 

points in the element as                                                                                                           
 

{𝑢𝑓} = [𝑁𝑓]
𝑇

{𝑢𝑓𝑒}                                (3) 

 

Where, [𝑁𝑓]
𝑇
 represents a matrix comprised of proper shape functions. 

From Eqs (1), (2) and (3), the strain energy, kinetic energy, and external work can be determined. 

After applying the Minimum Energy Principle, the following equations are obtained. 

 

  ([𝐾]𝑓𝑒 − 𝜔2[𝑀]𝑓𝑒){𝑢𝑓𝑒} = {𝑓𝑓𝑒}                          (4) 

 

[𝐾]𝑓𝑒 = 𝐸𝑒[𝐾̃]
𝑓𝑒

                                (5) 

 

[𝑀]𝑓𝑒 = 𝜌𝑒[𝑀̃]
𝑓𝑒

                                (6) 

 

𝐸𝑒  and 𝜌𝑒  show the volume elasticity and the effective density in the domain of the elements, 

respectively.  [𝐾]𝑓𝑒  and  [𝑀]𝑓𝑒 show the element stiffness matrix and the element mass matrix, 

respectively. [𝐾̃]
𝑓𝑒

, [𝑀̃]
𝑓𝑒

 show the matrix including the shape functions and their derivatives. {𝑓𝑓𝑒} 

is the nodal force vector.  
We utilize the following model having the complex effective density 𝜌𝑒

∗ and complex volume 

elasticity 𝐸𝑒
∗, for damped sound fields inside porous materials [12],[7]-[11]:  

 

𝜌𝑒 ⇒ 𝜌𝑒
∗ = 𝜌𝑒𝑅 + 𝒋𝜌𝑒𝐼                               (7) 

 

   𝐸𝑒 ⇒ 𝐸𝑒
∗ = 𝐸𝑒𝑅 + 𝒋𝐸𝑒𝐼                                (8) 

 

Where, 𝒋  is the imaginary unit. 𝜌𝑒𝑅  and  𝜌𝑒𝐼  are the real and imaginary parts of 𝜌𝑒
∗ , 

respectively. 𝐸𝑒𝑅 and 𝐸𝑒𝐼 show the real and imaginary parts of 𝐸𝑒
∗, respectively. We verified that 

this model is suitable for fibrous materials in cars [7]-[10]. We assumed the elastic waves [13]-[15] 

through the resin fiber of the porous materials can be neglected. 
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Element mass matrix [𝑀]𝑓𝑒 can be written by substituting Eqn. (7) into Eqn. (6). 
 

[𝑀]𝑓𝑒 = [𝑀𝑅]𝑓𝑒(1 + 𝒋𝜒𝑓𝑒)                           (9) 
 

𝜒𝑓𝑒 = 𝜌𝑒𝐼/𝜌𝑒𝑅                                (10) 
 

 [𝑀𝑅]𝑓𝑒  is the real part of the element mass matrix [𝑀]𝑓𝑒 . 𝜌𝑒𝐼  is the imaginary part of the 

effective density. 𝜒𝑓𝑒 = 𝜌𝑒𝐼/𝜌𝑒𝑅  shows the damping effect originated from flow resistance. 

Substituting Eqn.(8) into Eqn.(5), the following element stiffness matrix [𝐾]𝑓𝑒 is given. 
 

[𝐾]𝑓𝑒 = [𝐾𝑅]𝑓𝑒(1 + 𝒋𝜂𝑓𝑒)                               (11) 

 

      𝜂𝑓𝑒 = 𝐸𝑒𝐼/𝐸𝑒𝑅                                     (12) 

 

In Eq. (11), [𝐾𝑅]𝑓𝑒 shows the real part of the element stiffness matrix [𝐾]𝑓𝑒 . In Eq. (12), 𝜂𝑓𝑒 

shows the damping effect due to hysteresis between pressure and volume strain in the porous materials. 
Both the element mass matrix [𝑀𝑅]𝑓𝑒 and the element stiffness matrix [𝐾]𝑓𝑒 for internal gas in 

the porous materials have complex quantities.  

The complex effective density is 𝜌𝑒𝑅=1.40kg/m
3, 𝜒𝑓𝑒= -0.500. And the complex volume elasticity 

is 𝐸𝑒𝑅 =1.1   10
5N/m2,  𝜂𝑓𝑒  =0.100. For the porous layer in the double-walled structures, the 

isoparametric hexagonal elements are used. 

3.2 Equation for Vibration of Solid Bodies with Damping in the Double Walls 

We used discretized equations shown in the following equations from Eqns. (13) to (15) for 

vibration of the cover plate and the base plate with the acoustic black hole. For the viscoelastic layer 

on the acoustic black hole, we use the same model. These models are considered as conventional linear 

finite element model with hysteresis damping.  

{𝑢𝑠} shows the displacement vector for the solid bodies. Using the matrix comprised of shape 

functions[𝑁𝑠]𝑇, the relation between the displacements {𝑢𝑠𝑒} at nodal points and the displacement 

vector {𝑢𝑠} in an element for the solid bodies are approximated as: 

 

{𝒖𝒔} = [𝑵𝒔]𝑻{𝒖𝒔𝒆}                               (13) 

 

Strain energy, kinetic energy, and external work are determined, and then, by applying the 

Lagrange equation, the following expressions are given. 

 

([𝐾]𝑠𝑒 − 𝜔2[𝑀]𝑠𝑒){𝑢𝑠𝑒} = {𝑓𝑠𝑒}                          (14) 
 

[𝐾]𝑠𝑒 = [𝐾𝑅]𝑠𝑒(1 + 𝒋𝜂𝑠𝑒)                             (15) 

 
[𝐾]𝑠𝑒 and [𝑀]𝑠𝑒 represent the element stiffness matrix and element mass matrix, respectively. 

{𝑓𝑠𝑒} shows the nodal force vector in an element e  for the solid bodies. The element stiffness matrix 

[𝐾𝑅]𝑠𝑒  in Eqn.(15) has complex quantities in Eqn. (14). [𝐾𝑅]𝑠𝑒  
shows the real part of element 

stiffness matrix for the solid bodies. 𝜂𝑠𝑒 shows the material loss factor related with element e.  

For the viscoelastic materials and the elastic materials, the isoparametric hexahedral elements are 

mainly used with the non-conforming modes. For the viscoelastic damping material, the storage 

modulus of elasticity is 1.610  N/m2, the mass density is 1. 103 kg/m3 and the material loss factor 

𝜂𝑠𝑒 is 0.5.  
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3.3 Discrete Equations for the Global System of the Double Walls with Acoustic Black Hole 

All elements for the porous layer and the base plate and the cover plate in the double walls having 

the acoustic black hole are superposed by using equations from Eqns. (4) to (15). At boundaries 

between the porous layer and the solid bodies (i.e. the cover plate and the base plate), normal 

components of the displacements to the boundaries are continuous. Tangential components of the 

displacements along the boundaries are independent. From these conditions, the following equation is 

given. 

 

([𝐾]𝑎 − 𝜔2[𝑀]𝑎){𝑢𝑎} = {𝑓𝑎}                           (16) 
 

Where, {𝑓𝑎} shows the nodal force vector and }{ au  shows the nodal displacement vector. {𝑢𝑎} 

is comprised of {𝑢𝑓𝑒} and {𝑢𝑠𝑒}. [𝐾]𝑎  contains [𝐾]𝑓𝑒  and [𝐾]𝑠𝑒 , while [𝑀]𝑎  includes [𝑀]𝑓𝑒 

and [𝑀]𝑠𝑒. 

3.4 Equations for Modal Damping by Using MSKE Method [7]-[11] 

By ignoring the external force vector from Eq. (16), we can obtain the following complex 

eigenvalue problem: 

 

∑ ([𝐾𝑅]𝑒(1 + 𝒋𝜂𝑒) − (𝜔(𝑖))
2

(1 + 𝒋𝜂tot
(𝑖)

)[𝑀𝑅]𝑒(1 + 𝒋𝜒𝑒)){𝜙(𝑖)∗
}

𝑒max
𝑒=1 = {0}        (17) 

 

Where, superscript (i) represents the i-th eigenmode. (𝜔(𝑖))
2

 shows the real part of complex 

eigenvalue. {𝜙(𝑖)∗
}  shows the complex eigenvector and 𝜂tot

(𝑛)
 represents the modal loss factor. [𝐾𝑅]𝑒 

shows the real part of element stiffness matrix. [𝑀𝑅]𝑒 denotes the real part of element mass matrix. 

Next, the following parameters 𝛽𝑠𝑒 and 𝛽𝑘𝑒 are introduced: 

 

  𝛽𝑠𝑒 =
|𝜂𝑒|

𝜂max
，𝛽𝑠𝑒 ≦ 1, 𝛽𝑘𝑒 =

|𝜒𝑒|

𝜂max
，𝛽𝑘𝑒 ≦ 1                    (18) 

 

𝜂max shows the maximum value among the elements' material loss factors 𝜂𝑒 and 𝜒𝑒, (e = 1, 2, 

3,..., 𝑒max). Under assumption of  𝜂max ≪ 1, solutions of Eq. (17) can be expanded using a small 

parameter 𝜇 = 𝒋𝜂max [16]: 
 

 {𝜙(𝑖)∗
} = {𝜙(𝑖)}

0
+ 𝜇{𝜙(𝑖)}

1
+ 𝜇2{𝜙(𝑖)}

2
+ ⋯ ⋯                    (19) 

 

  (𝜔(𝑖))
2

= (𝜔0
(𝑖))2 + 𝜇2(𝜔2

(𝑖))2 + 𝜇4(𝜔4
(𝑖))2 + ⋯ ⋯                    (20) 

 

𝒋𝜂tot
(𝑖) = 𝜇𝜂1

(𝑖) + 𝜇3𝜂3
(𝑖) + 𝜇5𝜂5

(𝑖) + ⋯ ⋯                    (21) 

 

In the equations, under conditions of 𝛽𝑠𝑒 ≦ 1, 𝛽𝑘𝑒 ≦ 1 and 𝜂max ≪ 1, we can get 𝜂max𝛽𝑠𝑒 ≪
1 and 𝜂max𝛽𝑘𝑒 ≪ 1. Therefore, 𝜇𝛽𝑠𝑒  and 𝜇𝛽𝑘𝑒  can be considered as small parameter like 𝜇. In 

these equations, {𝜙(𝑖)}
0
，{𝜙(𝑖)}

1
，{𝜙(𝑖)}

2
，... and (𝜔0

(𝑖))2，(𝜔2
(𝑖))2，(𝜔4

(𝑖))2,...and 𝜂1
(𝑖)，𝜂3

(𝑖)，𝜂5
(𝑖), ... 

have real quantities.  

By substituting these equations from Eqs. (19) to (21) into Eq. (17), the following equation can be 

obtained: 

 

𝜂tot
(𝑖) = 𝜂𝑠𝑒

(𝑖) − 𝜂𝑘𝑒
(𝑖)                             (22) 
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𝜂𝑠𝑒
(𝑖) = ∑ (𝜂𝑒𝑆𝑠𝑒

(𝑖))

𝑒𝑚𝑎𝑥

𝑒=1

 , 𝑆𝑠𝑒
(𝑖) = {𝜙(𝑖)}

0

𝑇
[𝐾𝑅]𝑒{𝜙(𝑖)}

0
/ ∑ {𝜙(𝑖)}

0

𝑇
[𝐾𝑅]𝑒{𝜙(𝑖)}

0

𝑒max

𝑒=1

 

 

𝜂𝑘𝑒
(𝑖) = ∑ (𝜒𝑒𝑆𝑘𝑒

(𝑖))

𝑒𝑚𝑎𝑥

𝑒=1

, 𝑆𝑘𝑒
(𝑖) = {𝜙(𝑖)}

0

𝑇
[𝑀𝑅]𝑒{𝜙(𝑖)}

0
/ ∑ {𝜙(𝑖)}

0

𝑇
[𝑀𝑅]𝑒{𝜙(𝑖)}

0

𝑒max

𝑒=1

 

 

For the expressions, modal loss factor 𝜂tot
(𝑖) can be computed using 𝜂𝑠𝑒

(𝑖) and 𝜂𝑘𝑒
(𝑖). 𝜂𝑠𝑒

(𝑖) 

can be determined using share 𝑆𝑠𝑒
(𝑖)of strain energy of each element to total strain energy and material 

loss factors 𝜂𝑒 of each element e . 𝜂𝑘𝑒
(𝑖) can be determined using share 𝑆𝑘𝑒

(𝑖)of kinetic energy of 

each element to total kinetic energy and material loss factors 𝜒𝑒  of each element e . While the 

material loss factors 𝜂𝑒 are related hysteresis damping in the relation between stress and strain, the 

material loss factors 𝜒𝑒  are related flow resistance. The eigenmodes {𝜙(𝑖)}
0
 in Eqs. (22) has real 

quantity. Thus, the eigenmodes can be calculated by solving real eigenvalue problem, which 

corresponds to the equation by deleting all damping parameters in Eq. (17). We named the Eqn. (22) 

as Modal Strain and Kinetic Energy Method (MSKE method) [7]-[11]. This method corresponds to 

the extended version of Modal Strain Energy Method (MSE method) for structures including elastic 

bodies with viscoelastic bodies [17]. 

 

 
 

Fig. 5. Local coordinate and model for sound radiation from cover plate. 
 

3.5 Computation of Vibration Responses and Acoustic Radiation Power Using MSKE Method 

[7]-[11] 

Under input force, displacements {𝑢𝑜𝑢𝑡} as vibration responses in the structures are calculated 

using the modal parameters and modal damping from MSKE method in Sec.3.4 as follows.  

 

{𝑢𝑜𝑢𝑡} = ∑
{𝜙𝑖𝑛

(𝑖)
}

𝑡
{𝐹𝑖𝑛}{𝜙𝑜𝑢𝑡

(𝑖)
}

𝑚(𝑖)[(𝜔(𝑖))
2

−𝜔2+𝒋(𝜔(𝑖))
2

𝜂𝑠𝑒
(𝑖)

−𝒋𝜔2𝜂𝑘𝑒
(𝑖)

]

𝑚𝑎𝑥
𝑖=1     (23) 

   

Where, {𝐹𝑖𝑛}: external force vector at the excitation points, {𝜙𝑖𝑛
(𝑖)

}: the i-th eigenmode at the excitation 

points, {𝜙𝑜𝑢𝑡
(𝑖)

}: the i-th eigenmode at the observation points, 𝑚(𝑖) : the i-th modal mass. 
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Next, we consider sound radiation from the vibration in the cover plate to free sound field. Figure 

5 shows a calculation model around the surface of the cover plate having local coordinate system XYZ 

for calculation of sound radiation. We set the origin at one of the corner in the cover plate. We introduce 

a hemisphere face like a dome having radius R around the cover plate. In this paper, we set R as 10m. 

The center of the hemisphere face is at the origin. There exists the cover plate at the bottom of the 

hemisphere. We evaluate the acoustic radiation power on the hemisphere face. We assume that there 

is an infinite baffle around the cover plate. 

The sound pressure  𝑃𝑟𝑖 , radiated from the cover plate, can be expressed using Eq. (24) at a point 

r: (Xr,Yr,Zr) = (𝑅(sin𝜃)(cosψ), 𝑅(sin𝜃)(sinψ), 𝑅cos𝜃) on the hemisphere face. 

 

𝑃𝑟𝑖 = (𝒋𝜔𝑢𝑜𝑢𝑡,𝑖)𝒋𝜌0𝜔𝐴𝑖𝑒
−𝒋𝑘0𝐿𝑟𝑖/2𝜋𝐿𝑟𝑖                        (24) 

 

Where, 𝑣𝑜𝑢𝑡,𝑖 = 𝑗𝜔𝑢𝑜𝑢𝑡,𝑖 is the vibration velocity at the i-the node having the coordinate (Xi,Yi,0). 

𝐿𝑟𝑖 is the distance between the point r on the hemisphere face and the i-th node on the cover plate. 𝐴𝑖 

is the corresponding area relating the i-the node on the vibration surface of the cover plate. 𝑘0 = 𝜔/𝑐0, 

𝜌0 and 𝑐0 are the mass density and the sound speed of the air, respectively.  

The sound pressure 𝑃𝑟 at the point r can be calculated using the following equation considering the 

radiation from all nodes on the surface of the cover plate. 

 

𝑃𝑟 = ∑ (𝑃𝑟𝑖 )𝑖=1            (25) 

 

When the point r is sufficiently away from the surface of the cover plate, the acoustic intensity 𝐼𝑟 

can be expressed as  𝐼𝑟 = 𝑃𝑟
∗𝑃𝑟 /(𝜌0𝑐0) .  * stands for the complex conjugate. Thus, the acoustic 

radiation power W can be computed from the all surface of the cover plate as follows. 

 

𝑊 = (1/2) ∫  
2𝜋

0 ∫ 𝐼𝑟 𝑅2 (sin𝜃)
𝜋/2

0
d𝜃dψ                        (26) 

 

We evaluate effects of the acoustic black hole on sound radiation using Eq. (26). 

 

4. Results and Discussion 

4.1. Validity of Computation Method for a Flat Plate Having Krylov’s Acoustic Black Hole. 

Firstly, we try to compare between Krylov’s experiment [5] and our numerical analysis of the flat panel 

with the acoustic black hole to check the validity of our calculation method and our code. The geometry 

of the panel in the Krylov’s experiment is same with that of the cover plate in the double walls in this 

paper. For steel panel with the Krylov’ type acoustic black hole, Young’s modulus E is E = 

210GPa.The mass density ρ is ρ=7.8E+03kg/m3. The material loss factor η is η= 0.001. The edge of 

the acoustic black hole has the same material properties with the steel panel. For boundary condition, 

all edges are free. For the flat region in the panel, the thickness is 5.04mm. In the edge of the panel 

with the black hole, the function of decreasing thickness ℎ(𝑥) is ℎ(𝑥)=ε𝑥𝑚 (𝑚=2.2), where x is distance 

from the edge. In Fig.6, the experimental results (Fig.6(a)) by Krylov [5] are compared with our 

calculated results (Fig.6(b)) by our group using our own original codes including 3D FEM and Modal 

Strain and Kinetic Energy Method. In these figures, the blue solid lines show results without damping 

layer on the black hole, and the red dotted lines represent those with damping layer on the black hole. 

Our computation can reproduce the black hole effects in the experiment. 
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Fig. 6. Comparison of vibration responses for a flat plate having acoustic black hole between 
Krylov’s experiment [5] and our calculation using FEM with MSKE method. 
 

4.2. Evaluation of Reduction in Sound Radiation due to Adding the Acoustic Black Hole 

Figure 7 shows the acoustic radiation power from the cover plate with /without the acoustic black 

hole. In this figure, the ordinate stands for W/Fin (W: acoustic radiation power Watt, Fin: input N). 

The blue dotted line shows results without the acoustic black hole in the cover plate. As for the blue 

line, there are sharp peaks corresponding to the resonances of the double walls because of low damping. 

The red solid line represents results with the black hole. It can be seen that the acoustic radiation power 

for the cover plate with the black hole is much less than that for no black hole over all frequency region. 

Especially, in the higher frequency, very large reduction can be obtained. This phenomenon can be 

explained as follows. 
 

 
 

Fig. 7. Sound radiation with/without acoustic black hole. 
 

The critical coincidence frequency of this steel cover plate (thickness: 5.04mm) is about 3000Hz. It 

is known that damping treatment is effective to reduce sound radiation in the higher frequency region 

than the critical coincidence frequency. On the other hand, the Krylov’s acoustic black hole has higher 

damping in the higher frequency region than 1600Hz. Therefore, large reduction in the sound radiation 

is notably observed in the high frequency region. Further, in the acoustic black hole, we experienced 
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that very short wave lengths are observed when the black hole yields high damping. Generally, if the 

wave length of the air is longer than the wave length of structural vibration, sound radiation can be 

reduced because cancelation occurs more easily among plus and minus amplitudes in each vibration 

mode when vibration is transferred to sound. In the region around the acoustic black hole, we can 

obtain extraordinary short wave lengths in the vibration (see Fig.8 as a typical example). This implies 

that sound radiation can be reduced due to short wave lengths in the vibration around the acoustic black 

holes in the cover plate. 

 

 
 
Fig. 8. An example of local deformation having short wave length at the edge of the cover 
plate with the acoustic black hole. 

5. Conclusions 

In this paper, we perform numerical analysis of damped vibration and sound radiation for structures 

having a porous layer sandwiched by double walls. The double walls are composed of a steel base plate 

and a steel cover plate. The cover plate in double walls has a Krylov type acoustic black hole at one edge 

of the plate. Viscoelastic damping material is laminated on the surface of the black hole. One point in the 

base plate is excited using white noise. Numerical analysis is performed to clarify changes of acoustic 

radiation from the cover plate due to the acoustic black hole using FEM and MSKE method (Modal Strain 

and Kinetic Energy method) proposed by Yamaguchi et al. Sound radiation from the cover plate decreased 

due to existence of the acoustic black hole in the cover plate. This is because of high damping due to the 

acoustic black hole. In the region around the acoustic black hole, we can obtain extraordinary short wave 

lengths in the vibration. This also causes that sound radiation can be decreased. This is because cancelations 

can more easily occur during radiation due to shorter wave lengths in the vibration around the acoustic 

black holes in the cover plate. 

Acknowledgement 

This research is supported by Suzuki Foundation Research Grant. 

 

References  

[1] M.A. Mironov, “Propagation of a flexural wave in a plate whose thickness decreases smoothly to zero in a 

finite interval”, Soviet Physics-Acoustics, Vol.34, pp.318–31 , 1 88. 

[2] V.V. Krylov, “Laminated plates of variable thickness as effective absorbers for flexural vibrations”, 

Proceedings of the 17th ICA (Rome, Italy), September 2001. 

[3] V.V. Krylov, F.J.B.S. Tilman, “Acoustic ‘black holes’ for flexural waves as effective vibration dampers”, 
Journal of Sound and Vibration, Vol.274(3–5), pp.605–61 ,2004. 



Journal of Mechanical and Electrical Intelligent System (JMEIS) 

 

JMEIS, Vol.8, No.1, pp.01-11, 2025. 
11 

[4] V.V. Krylov, “New type of vibration dampers utilizing the effect of acoustic ‘black holes’ ”, Acta Acustica 

united with Acustica, Vol. 0(5), pp.830–837, 2004. 

[5] V.V. Krylov, V. Kralovic, D.J. O’Boy, “Damping of flexural vibrations in rectangular plates using the 

acoustic black hole effect”, Journal of Sound and Vibration, Vol.32 , pp.4672-4688,2010. 

[6] H.Oberst, Akustische Beihefte , Vol.4, pp.181-1 4,1 52. 

[7] T. Yamaguchi, Y. Kurosawa and S. Matsumura, “FEA for damping of structures having elastic bodies, 

viscoelastic bodies, porous media and gas”, Mechanical Systems and Signal Processing, Vol.21(1), 

pp.535-552, 2007. 

[8] T. Yamaguchi, I. Shirota, H. Enomoto and Y. Kurosawa, “Vibration transmission between double walls in 

cars with damping and sound bridges”, Noise Control Engineering Journal, Vol.58(3), pp.273-282, 2010. 

[9] T. Yamaguchi, Y. Kurosawa and H. Enomoto, “Damped vibration analysis using finite element method 

with approximated modal damping for automotive double walls with a porous material”, Journal of Sound 

and Vibration, Vol.325, pp.436-450, 200 . 

[10] K. Takebayashi, A. Tanaka, K. Andow and T. Yamaguchi, “Modal loss factor approximation for u-p 

formulation FEM using modal strain and kinetic energy method”, Journal of Sound and Vibration, 

Vol.505, pp.1–14, 2021. 

[11] T. Yamaguchi, H. Hozumi, Y. Hirano, K. Tobita and  Y. Kurosawa, “Nonlinear transient response analysis 

for double walls with a porous material supported by nonlinear springs using FEM and MSKE method”, 
Mechanical Systems and Signal Processing, Vol.42, pp.115-128, 2014.  

[12] H. Utsuno, T. W. Wu, A. F. Seybert and T. Tanaka, “Prediction of sound fields in cavities with sound 

absorbing materials”, AIAA Journal, Vol.28 (11), pp.1870-1875, 1  0. 

[13] Y. J. Kang and S. Bolton, “Finite element modeling of isotropic elastic porous materials coupled with 

acoustical finite elements”, Journal of the Acoustical Society of America, Vol. 8(1), pp.635-643, 1  5. 

[14] N. Attala, R. Panneton, and P. Debergue, “A mixed pressure-displacement formulation for poroelastic 

materials”, Journal of the Acoustical Society of America, Vol.104 (3), pp.1444-1452, 1  8. 

[15] M. A. Biot, Theory of propagation of elastic waves in a fluid-saturated porous solid”, Journal of the 

Acoustical Society of America, Vol.28 (2), pp.168-178, 1 55. 

[16] B. A. Ma, and J. F. He, “A finite element analysis of viscoelastically damped sandwich plates”, Journal of 

Sound and Vibration, Vol.152(1), pp.107-123, 1  2. 

[17] C. D. Johnson and D. A. Kienholz, “Finite element prediction of damping structures with constrained 

viscoelastic layers”, AIAA Journal, Vol.20( ), pp.1284-12 0, 1 82. 

[18] A. Pelata, F. Gautiera, S. C. Conlonb, F. Semperlottic “The acoustic black hole: A review of theory and 

applications”, Journal of Sound and Vibration, Vol.476, pp.1–24, 2020. 


