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Abstract. This paper presents an expansion method for parameter distribution estimation based on 
variational Bayes inference in a linear single-degree-of-freedom system using Gaussian random 
vibration responses. The likelihood function of the proposed method is defined by the analytical 
solution of the Fokker–Planck equation derived in a previous study. The unknown parameters are 
estimated using the variational Bayes formula. Furthermore, numerical identifications are conducted 
using random responses from the results of the 4th-order Runge–Kutta method. The estimated 
performance of the proposed method was verified in terms of the dependence on the sample size. 
Benchmark tests were conducted to compare the accuracy of the variational Bayes and maximum 
likelihood estimations. The variational Bayes estimation exhibited higher accuracy than the maximum 
likelihood estimation for small sample sizes. Furthermore, a high-accuracy implementation trial was 
conducted with a focus on the dependence of the calculation sequence on the expected value of the 
variance.  

1. Introduction 
System identification based on random vibration responses has traditionally been used in the field 

of mechanical and structural vibrations, wherein autoregressive time series analysis is the most 
extensively employed method [1,2,3,4]. Since this method only requires output data and obtaining the 
input data is generally difficult in field tests, it is often used for actual field data. However, owing to 
its dependence on the output data, its accuracy in predicting the error variance is low. In recent years, 
the ARX model which uses input–output data, has been applied to solve the above problem [5,6].  

Operational modal analysis (OMA) has recently been developed in the field of stochastic signal 
processing technologies [7,8,9,10]. Mode shape visualization and estimation of modal parameters are 
conducted using a frequency response based on the modal expansion, which uses white noise excitation 
as the input. Subsequently, the modal shape in the actual structure can be understood using OMA. This 
technique is available for the analysis of actual field sensor data. However, as it is based on the 
frequency method, it cannot be applied to large-damping structural and material systems. 

In previous reports, we proposed an identification method based on maximum likelihood estimation 
using a probability density function [11]. This function obeys system parameters such as the spring 
constant, damping constant, and diffusion coefficient of the input white noise. These characteristics 
are unrelated to the frequency spectrum. Thus, a method based on probability density function can be 
applied to large damping-vibratory systems. 

Furthermore, the above identification method based on maximum likelihood estimation has been 
applied to the hardening-spring Duffing system [12]. The formula for estimating the analytical form 
was not obtained because the optimization function was nonlinear with respect to the unknown 
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parameters. Hence, a numerical solver was proposed for the optimization function, which focused on 
the ratio of the orders of moments. 

The method based on maximum likelihood estimation uses point estimation and cannot obtain the 
unknown parameter distribution. If the parameter distribution is obtained, various statistics for the 
unknown parameters can be calculated. A framework using variational Bayes inference can obtain the 
unknown parameter distribution [13,14,15,16,17,18,19]. 

In this study, we investigated an identification method based on the variational Bayes inference in 
a single-degree-of-freedom (1-DoF) vibratory system that was subjected to white random excitation. 
First, the identification algorithm was derived based on variational Bayes inference. The proposed 
likelihood function was formulated using the Maxwell-Boltzmann distribution. A numerical 
simulation was performed using the derived identification algorithm. Moreover, benchmark tests were 
conducted to compare the variational Bayes and the maximum likelihood estimations. A high-accuracy 
implementation trial was conducted with a focus on the dependence of the calculation sequence on the 
expectation value of the variance.  

2. Derivation of identification algorithm 

2.1 Likelihood function based on Maxwell-Boltzmann distribution 
The Fokker–Planck equation for unit mass in a 1-DoF system subjected to a white noise excitation 

force is as follows [11]: 
 𝜕𝑓(𝑥ଵ, 𝑥ଶ, 𝑡)𝜕𝑡 = −𝑥ଶ 𝜕𝑓(𝑥ଵ, 𝑥ଶ, 𝑡)𝜕𝑥ଵ + (𝑘𝑥ଵ + 𝑐𝑥ଶ) 𝜕𝑓(𝑥ଵ, 𝑥ଶ, 𝑡)𝜕𝑥ଶ + 𝑐𝑓(𝑥ଵ, 𝑥ଶ, 𝑡) + 𝐷 𝜕ଶ𝑓(𝑥ଵ, 𝑥ଶ, 𝑡)𝜕𝑥ଶଶ , (1) 

 
where 𝑓(𝑥ଵ, 𝑥ଶ, 𝑡) and 𝐷 represent the probability density function of the stochastic response and 

the diffusion coefficient, respectively, and 𝑘  and 𝑐  represent the spring constant and damping 
coefficient, respectively. Furthermore, the displacement 𝑥ଵ(𝑡) = 𝑥(𝑡) and velocity 𝑥ଶ(𝑡) = 𝑑𝑥ଵ(𝑡)/𝑑𝑡. The analytical solution for the stationary Fokker–Planck equation is as follows: 

 𝑓௦(𝑥ଵ, 𝑥ଶ) = 𝑐√𝑘2𝜋𝐷 exp ቂ− 𝑐2𝐷 (𝑘𝑥ଵଶ + 𝑥ଶଶ)ቃ.                                          (2) 
 
Eq. (2) contains the parameters 𝑘  and 𝐷/𝑐  and the stationary distribution is represented by 𝑓௦(𝑥ଵ, 𝑥ଶ). The analytical solution for the Fokker–Planck equation is equal to the Maxwell–Boltzmann 

distribution [20]. Therefore, we refer to the likelihood function obtained using the analytical solution 
of the Fokker–Planck equation as the “Maxwell–Boltzmann likelihood” in a broad sense.  

In this study, we propose an estimation method for the unknown parameters 𝑘 and 𝐷/𝑐 based on 
variational Bayes inference [13]. The Maxwell–Boltzmann likelihood is defined by the analytical 
solution of the Fokker–Planck equation defined in Eq. (2) and is observed as time series data. The 
observed time series data contain the displacement 𝑥ଵ and velocity 𝑥ଶ, and the datasets are 𝐃 =൛൫𝑥ଵ,ଵ, 𝑥ଶ,ଵ൯, ൫𝑥ଵ,ଵ, 𝑥ଶ,ଵ൯, … , ൫𝑥ଵ,ఈ, 𝑥ଶ,ఈ൯ … , ൫𝑥ଵ,ே, 𝑥ଶ,ே൯ൟ . Therefore, the likelihood is defined as 
follows: 

 𝐿 = ቀ 𝜏ଵ2𝜋ቁே/ଶ ∙ exp ൥− ෍ 𝜏ଵ𝑥ଵఈଶ2ே
ఈୀଵ ൩ ∙ ቀ 𝜏ଶ2𝜋ቁேଶ ∙ exp ൥− ෍ 𝜏ଶ𝑥ଶఈଶ2ே

ఈୀଵ ൩,                       (3) 

 
where, 𝜏ଵ = 𝑘 ∙ 𝑐/𝐷 and 𝜏ଶ = 𝑐/𝐷. 
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2.2 Identification algorithm based on variational Bayes inference 
Variational Bayes inference is based on Bayes theorem. The assumption of a conjugate distribution 

between the prior and posterior distributions is required for Bayes theorem. The Maxwell–Boltzmann 
likelihood is also incorporated into the Bayes theorem (i.e., posterior distribution = likelihood function × prior distribution).  

To apply the variational Bayes formula, the mean field approximation of the posterior distribution 𝑞(𝜏ଵ, 𝜏ଶ) is calculated using the factorized posterior distributions, 𝑞ఛభ(𝜏ଵ) and 𝑞ఛమ(𝜏ଶ) as follows: 
 𝑞(𝜏ଵ, 𝜏ଶ) = 𝑞ఛభ(𝜏ଵ) ∙ 𝑞ఛమ(𝜏ଶ),                                                         (4) 
 
where the factorized conjugate prior distribution assumes the gamma distribution because the 

Maxwell–Boltzmann likelihood is composed of a Gaussian distribution. The factorized conjugate prior 
distributions are defined as follows: 

 𝑝(𝜏ଵ) = Gam(𝜏ଵ|𝑎ଵ, 𝑏ଵ),      𝑝(𝜏ଶ) = Gam(𝜏ଶ|𝑎ଶ, 𝑏ଶ),                                 (5) 
 
where 𝑎ଵ, 𝑏ଵ, 𝑎ଶ, 𝑏ଶ  represent the gamma distribution parameters. According to the variational 

Bayes formula [13], the following relationship exists between the factorized posterior distribution and 
the posterior distribution based on Baye’s theorem: 

 In  𝑞௜∗(𝑍௜) = E௜ஷ௝ሾIn 𝑝(𝐃, 𝐙)ሿ + const,                                                  (6) 
 
where 𝑍௜ represent 𝜏ଵ and 𝜏ଶ, respectively, 𝑝(𝐃, 𝐙) represents the posterior distribution based 

on the Bayes theorem, 𝐃 represents the observed data, and 𝐙 = {𝜏ଵ, 𝜏ଶ}. Furthermore, 𝑝(𝐃|𝜏ଵ, 𝜏ଶ) 
represents the likelihood function (i.e., Maxwell-Boltzmann likelihood). By combining Eqs. (3) to (5) 
into Eq. (6), the factorized posterior distribution can be expressd as follows:  

     ln 𝑞ఛభ∗ (𝜏ଵ) = Eఛమሾln 𝑝(𝐃, 𝜏ଵ, 𝜏ଶ)ሿ + const= Eఛమሾln{𝑝(𝐃|𝜏ଵ, 𝜏ଶ)𝑝(𝜏ଵ)𝑝(𝜏ଶ)}ሿ + const= Eఛమሾln 𝑝(𝐃|𝜏ଵ, 𝜏ଶ) + ln 𝑝(𝜏ଵ) + ln 𝑝(𝜏ଶ)ሿ + const= Eఛమሾln 𝑝(𝐃|𝜏ଵ, 𝜏ଶ) + ln 𝑝(𝜏ଵ)ሿ + const= Eఛమ ൥ln ൝ቀ 𝜏ଵ2𝜋ቁே/ଶ exp ൥− ෍ 𝜏ଵ𝑥ଵఈଶ2ே
ఈୀଵ ൩ ቀ 𝜏ଶ2𝜋ቁே/ଶ exp ൥− ෍ 𝜏ଶ𝑥ଶఈଶ2ே

ఈୀଵ ൩ൡ
+ ln Gam(𝜏ଵ|𝑎ଵ, 𝑏ଵ)൩ + const

= Eఛమ ൥ln ቀ 𝜏ଵ2𝜋ቁே/ଶ exp ൥− ෍ 𝜏ଵ𝑥ଵఈଶ2ே
ఈୀଵ ൩ + ln ൬ 1Γ(𝑎ଵ) 𝑏ଵ௔భ𝜏ଵ௔భିଵ expሾ−𝑏ଵ𝜏ଵሿ൰൩ + const

= Eఛమ ൥ln(𝜏ଵ)ே/ଶ exp ൥− ෍ 𝜏ଵ𝑥ଵఈଶ2ே
ఈୀଵ ൩ + ln൫𝜏ଵ௔భିଵ expሾ−𝑏ଵ𝜏ଵሿ൯൩ + const

= Eఛమ ൥𝑁2 ln 𝜏ଵ − 𝜏ଵ ෍ 𝑥ଵఈଶ2ே
ఈୀଵ + (𝑎ଵ − 1) ln 𝜏ଵ − 𝑏ଵ𝜏ଵ൩ + const

= Eఛమ ൥൬𝑁2 + 𝑎ଵ − 1൰ ln 𝜏ଵ − ൭෍ 𝑥ଵఈଶ2ே
ఈୀଵ + 𝑏ଵ൱ 𝜏ଵ൩ + const. 
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In the above equations, the factorized posterior distribution is equal to the gamma distribution Gam(𝜏ଵ|𝑎ଵே, 𝑏ଵே) and the parameter of the factorized posterior distribution is obtained as follows:  
 𝑎ଵே = 𝑎ଵ + 𝑁2 , 𝑏ଵே = ෍ 𝑥ଵఈଶ2ே

ఈୀଵ + 𝑏ଵ.                                                    (7) 

 
In the same manner, the optimization of 𝜏ଶ is expressed as follows:  
     ln 𝑞ఛమ∗ (𝜏ଶ) = Eఛభሾln 𝑝(𝐃, 𝜏ଵ, 𝜏ଶ)ሿ + const= Eఛభሾln 𝑝(𝐃|𝜏ଵ, 𝜏ଶ) + ln 𝑝(𝜏ଶ)ሿ + const= Eఛభ ൥ln ቀ 𝜏ଶ2𝜋ቁே/ଶ exp ൥− ෍ 𝜏ଶ𝑥ଶఈଶ2ே

ఈୀଵ ൩ + ln ൬ 1Γ(𝑎ଶ) 𝑏ଶ௔మ𝜏ଶ௔మିଵ expሾ−𝑏ଶ𝜏ଶሿ൰൩ + const
= Eఛభ ൥ln(𝜏ଶ)ே/ଶ exp ൥− ෍ 𝜏ଶ𝑥ଶఈଶ2ே

ఈୀଵ ൩ + ln൫𝜏ଶ௔మିଵ expሾ−𝑏ଶ𝜏ଶሿ൯൩ + const
= Eఛభ ൥൬𝑁2 + 𝑎ଶ − 1൰ ln 𝜏ଶ − ൭෍ 𝑥ଶఈଶ2ே

ఈୀଵ + 𝑏ଶ൱ 𝜏ଶ൩ + const, 
 
where, the factorized posterior distribution is equal to the gamma distribution Gam(𝜏ଶ|𝑎ଶே, 𝑏ଶே), 

and the parameter of the factorized posterior distribution is obtained as follows:  
 𝑎ଶே = 𝑎ଶ + 𝑁2 , 𝑏ଶே = ෍ 𝑥ଶఈଶ2ே

ఈୀଵ + 𝑏ଶ.                                                    (8) 

 
Furthermore, the unknown parameter distributions (i.e., probability density functions for 𝑘 and 𝐷/𝑐) are obtained by transforming the probability variables using the parameters of Eqs. (7) and (8), 

respectively.  
The probability density function of the spring constant (𝑘) is obtained as follows: 
 𝑝(𝑘) = Γ(𝑎ଵே + 𝑎ଶே)Γ(𝑎ଵே)Γ(𝑎ଶே) 𝑏ଵே௔భಿ𝑏ଶே௔మಿ 𝑘௔భಿିଵ(𝑏ଵே ⋅ 𝑘 + 𝑏ଶே)௔భಿା௔మಿ .                           (9) 

 
The ratio between the diffusion coefficient (𝐷) and damping constant (𝑐) is obtained as follows: 
 𝑝(𝐷/𝑐) = 1Γ(𝑎ଶே) 𝑏ଶே௔మಿ 1(𝐷/𝑐)ଶ ൬ 1𝐷/𝑐൰௔మಿିଵ exp ൤− 𝑏ଶே(𝐷/𝑐)൨,                     (10) 

 
where, Γ(∙) represents the gamma function.  

3. Numerical simulation 

3.1 Conditions 
Flowcharts for the numerical identification algorithm using variational Bayes estimation and 

maximum likelihood estimation are presented in Fig. 1 (a) and (b), respectively.  
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In both cases, a time series was generated using the 4-th order Runge–Kutta method to estimate the 
unknown system parameters. The spring constant was set to 𝑘 = 1.0, the damping constant was set to 𝑐 = 0.01, 0.1, 1.0, the variance of the input white noise excitation was set to 𝜎௪ଶ = 1, the diffusion 
coefficient is 𝐷 = 0.05, the initial conditions were 𝑥(0) = 0 and 𝑣(0) = 0, and the sampling period 
was Δ𝑡 = 0.1. Random responses were generated for 𝑀 = 10000 samples. The identification was 
performed using 𝑁 samples between 𝑀 − 𝑁 and 𝑀 to eliminate the stochastic transience. Here, 𝑁 
was varied from 10 to 300 in increments of 10. 

The variational Bayes and maximum likelihood estimations were performed using the derived 
formula. The process was repeated for a set number of iterations and the estimated parameter values 
at each iteration were saved in memory, which were then averaged to obtain the final estimated 
parameter values. 

 

       
 

(a) Variational Bayes estimation            (b) Maximum likelihood estimation 
 
Fig. 1. Flowcharts for the numerical identification algorithm using (a) Variational Bayes 
estimation and (b) Maximum likelihood estimation. 

3.2 Results and discussion 
The dependencies of the estimated parameter values on the number of samples are shown in Fig. 2. 

The black dotted line indicates the true value, the green solid line indicates the maximum likelihood 
estimation (MLE), and the blue solid line indicates the case of variational Bayes (VB) estimation. 
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(a) 𝑐 = 0.01 (small damping case; loss coefficient 𝜂 = 0.01) 

 
(b) 𝑐 = 0.1 (middle damping case; loss coefficient 𝜂 = 0.1) 

 
(c) 𝑐 = 1.0 (large damping case; loss coefficient 𝜂 = 1.0) 

 

Fig. 2. Benchmark test results in terms of sample number dependence. The left column 
shows the results for the spring constant (𝑘) and the right column shows the results for the 
ratio diffusion coefficient (𝐷) and the damping constant (𝑐). The damping constant (𝑐) is set 
to (a) 𝑐 = 0.01, (b) 𝑐 = 0.1, (c) 𝑐 = 1.0. 

 
The estimation values in all the cases converged with the true values as the number of samples 

increased. For the spring constant, the difference between the true values and the values estimated 
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using the maximum likelihood estimation were high when number of samples were small; however, 
these values converged with the true values when the number of samples were large.  

In contrast, the variational Bayes estimation method performed well at all sample sizes and damping 
constants. For the ratio between the diffusion coefficient and damping constant, no clear difference in 
the estimation accuracy between the variational Bayes and maximum likelihood estimations was 
observed.  

4. High-accuracy implementation trial 
A high-accuracy implementation trial was carried out. The expected value of the variance is 

dependent on the calculation sequence. Thus, the calculation sequence must be carefully considered 
for high-accuracy identification. The revised flowcharts for the numerical identification algorithm 
using variational Bayes estimation and maximum likelihood estimation are shown in Fig. 2 (a) and (b), 
respectively. The following areas were modified. The average variance was calculated before the 
estimation of the parameters 𝑘 and 𝐷/𝑐. Consequently, the dependance of the estimated parameter 
values on the sample size decreased. Therefore, in the high-accuracy implementation trial, Eሾ𝑥ଵଶሿ and Eሾ𝑥ଶଶሿ, calculated using Eqs. (7) and (8), were averaged before the estimation of the parameters 𝑘 and 𝐷/𝑐. 

 

            
(a) Variational Bayes estimation          (b) Maximum likelihood estimation 

 

Fig. 3. Flowcharts for the numerical identification algorithm using (a) Variational Bayes 
estimation and (b) Maximum likelihood estimation for high-accuracy implementation. 
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(a) 𝑐 = 0.01 (small damping case; loss coefficient 𝜂 = 0.01) 

  
(b) 𝑐 = 0.1 (middle damping case; loss coefficient 𝜂 = 0.1) 

  
(c) 𝑐 = 1.0 (large damping case; loss coefficient 𝜂 = 1.0) 

 
Fig. 4. Benchmark test results for the high-accuracy implementation trial. The left column 
shows the results for the spring constant (𝑘) and the right column shows the results for the 
ratio diffusion coefficient (𝐷) and the damping constant (𝑐). The damping constant (𝑐) is set 
to (a) 𝑐 = 0.01, (b) 𝑐 = 0.1, and (c) 𝑐 = 1.0. 

 
The dependencies of the estimated parameter values on the number of samples for the high-accuracy 

implementation trial are shown in Fig. 4. The black dotted line indicates the true value, the green solid 
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line indicates the maximum likelihood estimation (MLE), the blue solid line indicates the variational 
Bayes (VB), the magenta solid line represents the revised MLE (effective-MLE; E-MLE), and the light 
blue solid line indicates the revised VB (effective-VB; E-VB). 

The estimated parameter values converged with the true values in all the cases the number of 
samples increased. For the spring constant, the estimation accuracy of E-MLE and E-VB were higher 
than those of MLE and VB. Furthermore, the values estimated using E-VB converged with those 
estimated using E-MLE. Thus, the effectiveness of the proposed high-accuracy implementation was 
verified for the estimation of the spring constant parameter. However, in the case of the ratio between 
the diffusion coefficient and damping constant, the values estimated using MLE and VB were in 
agreement with those estimated using E-MLE and E-VB. Thus, the effectiveness of the proposed high- 
accuracy implementation was not observed in the case of estimating the ratio the between diffusion 
coefficient and damping constant. 

5. Conclusions 
In this paper, we have presented identification method based on variational Bayes estimation using 

the Maxwell–Boltzmann likelihood. The following results were obtained. 
(1) The identification algorithm based on variational Bayes inference was formulated using the 

Maxwell–Boltzmann likelihood.  
(2) Benchmark tests on the estimation accuracy were conducted for the maximum likelihood 

estimation. The variational Bayes estimation exhibited higher accuracy than the maximum 
likelihood estimation when the sample size was small. 

(3) A high-accuracy implementation trial was conducted by considering the dependence of the 
calculation sequence on the expected value of the variance. The effectiveness of the proposed 
implementation was verified in the case of the spring constant estimation. 
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