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Abstract. The modified Kalman Filter incorporating Stochastic Dynamic Analysis in prediction step 
(KF-SDA) was already introduced in previous paper for systematically account for the nonlinear and 
parametric uncertainty excitation systems. In conventional study, the fundamental verifications were 
performed using single degree-of-freedom (DOF) system, two-DOF system, single-DOF system which 
is simultaneously subjected to stochastic parametric excitations and nonlinear single-DOF system, 
respectively. On the other hand, the actual field data analysis is often desired the methodology of the 
unknown parameter estimation using observable sensor data, for example, online anomaly detection, 
diagnosis, and so on. However, the conventional KF-SDA was not conducted the expansion to 
parameter estimation problem. This paper deals with the expansion method of KF-SDA to a parameter 
estimation problem. The parameter estimation problem based on KF-SDA will derived using the new 
state space representation. The fundamental operation verification is performed in the case of single-
DOF system which is subjected to white noise excitation. Furthermore, application to the nonlinear 
system which is subjected to white noise excitation and the random parametric excitation system are 
considered. 

  

1. Introduction 
Filtering is important in various industrial applications for efficient operation using actual field data. 

Filters were first introduced by Norbert Wiener in the 1940s. Twenty years later, Kalman and Bucy 
had successfully demonstrated the use of filters in digital signal processing [1,2]. In particular, they 
showed that modelling uncertainty is important for state estimations [3,4,5]. 

Extensive research has been conducted on Kalman filters which consider modeling uncertainty 
[3,4,5]. In a Kalman filter, the system parameters are modeled by random perturbations based on a 
stochastic model with time-dependent noise (or multiplicative noise). Previously, the Kalman-type 
filtering problem for a linear system with parametric uncertainties was considered [5,6,7]. In those 
previous studies, a benchmark test with the classical Kalman filter was also introduced; as a result, the 
accuracy of the above-mentioned previous method was higher, compared with methods that use 
classical filtering approaches. However, the above state estimator cannot be used on nonlinear systems, 
because it assumes a linear Gaussian process. Thus, an approach that systematically deals with 
nonlinear systems and parametric uncertainty excitation systems is required.  

In light of the above, in a previous paper we proposed a modified Kalman filter that incorporates 
stochastic dynamic analysis (KF-SDA) into its prediction process [8]. The proposed KF-SDA was 
derived by rewriting the formula for the prediction process in the classical Kalman filtering approach. 
The prediction process of the classical Kalman filter is composed of the update process, estimation of 
the state value, and estimation of the error covariance matrices. The update process obeys the dynamics 
of the Ito probabilistic differential equation of a linear system. Contrary to the previous Kalman filter, 
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in our proposed method, in the prediction process we replace the Ito probabilistic differential equation 
by the moment equation.  

In a previous paper [8], the fundamental operation of the proposed method was numerically 
validated for a system with a single degree of freedom (single-DOF system) and for a system with two 
degrees of freedom (two-DOF system), subjected to white noise. Furthermore, a single-DOF system 
subjected simultaneously to white noise and random parametric excitation was considered. In addition, 
the Duffing system subjected to white noise was also considered.  

On the other hand, one of the typical applications of the Kalman filter is the well-studied parameter 
estimation problem [9,10,11]. Applications to frequency tracking [9], structural parameter estimation 
[10], and correspondence of modeling uncertainty [11] have been considered previously. Thus, our 
proposed Kalman filter was evaluated in the context of the parameter estimation problem. 

In this paper, we described an expansion method for the parameter estimation problem of the 
proposed KF-SDA. The parameter estimation problem of KF-SDA is derived by considering that the 
parameters’ dynamics are described by the Brownian motion. The fundamental operation is 
numerically validated for a single-DOF system subjected to white noise. Furthermore, applications to 
third-order (i.e., symmetrical restoring force) and second-order (i.e., asymmetrical restoring force) 
nonlinear systems subjected to white noise are considered. Moreover, an application to a single-DOF 
system in the case of a unit mass subjected simultaneously to random parametric and white noise 
excitations is considered. 

2. Extension to the parameter estimation problem of KF-SDA 
The parameter estimation problem of KF-SDA is formulated by assuming that the unknown 

parameters’ dynamics are described by the Brownian motion. The state space representation of the 
parameter estimation problem is as follows: 

 
State equation 𝑑𝜽(𝑡)𝑑𝑡 = 𝜸𝑣(𝑡)                                                                       (1) 
Observation equation 𝑦(𝑡) = 𝒄(𝑡)𝜽(𝑡) + 𝑤(𝑡)                                                              (2) 
 
where, 𝜽 is the 1 × 𝑛 vector of unknown parameters. The right-hand-side term 𝜸𝑣(𝑡) in the state 

equation represents the white noise excitation. Thus, the unknown parameters’ dynamics are described 
by the Brownian motion. The moment equation is as follows: 

 𝑑E[ℎ]𝑑𝑡 = ෍ ෍ E ቈቆ 𝜕ଶℎ𝜕𝜃௜𝜕𝜃௝ቇ [𝜸𝐷𝜸்]௜,௝቉௡
௝ୀଵ

௡
௜ୀଵ                                             (3) 

 
The moment equation describes the temporal evolution of the system. Here, the right-hand-side 

term represents the contribution from the second-order moment. E[∙] represents the expected value of 
the bracketed quantity, while ℎ is the product of stochastic variables. For example, ℎ = 𝜃ଵ௜𝜃ଶ௝ … 𝜃௡௞. 
The indices 𝑖, 𝑗, … , 𝑘 are constrained by the moment order. For example, in the case of the first-order 
moment, the constraint is 𝑖 + 𝑗 + ⋯ + 𝑘 = 1(i.e., the allowed index combinations are 𝑖 = 1, 𝑗 =0, … , 𝑘 = 0 , 𝑖 = 0, 𝑗 = 1, … , 𝑘 = 0 , and 𝑖 = 0, 𝑗 = 0, … , 𝑘 = 1 ). Moreover, 𝐷  represents the 
diffusion coefficient of the system noise. Here, first-order moments are identified as unknown 
parameters, as a E[𝜃௜] = 𝜃௜ (𝑖 = 1, … , 𝑛). Moreover, second-order moments are identified as a prior 
covariance matrix of unknown parameters, as follows: 
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𝑃ି = ቎ E[𝜃௜ଶ] ⋯ E[𝜃௜𝜃௡]⋮ ⋱ ⋮E[𝜃௡𝜃௜] ⋯ E[𝜃௡ଶ] ቏                                                           (4) 

 
The solution of the moment equation (i.e., the average vector and covariance matrix) is analytically 

obtained, as follows: 
 
Solution of the first-order moment equation 𝜽(𝑡) = 𝜽(𝑡 − 1)                                                                 (5) 
 
Solution of the second-order moment equation 𝑃(𝑡) = 𝑃(𝑡 − 1) + 2𝐷𝜸𝜸்𝑑𝑡                                                    (6) 
 
The, discrete time increment of 𝑑𝑡 denotes the sampling time. The proposed KF-SDA is obtained 

by replacing the formula for the prediction process using the above analytical solutions of the moment 
equation. The observation equation (Eq. (2)) is composed of the governing equation. The observation 
matrix 𝒄(𝑡) contains instantaneous sensor data. 

 

 
Fig. 1. Flowchart of the parameter estimation problem using the proposed Kalman filter (KF-
SDA).  

 
Based on the above considerations, the flowchart of the parameter estimation problem using KF-

SDA is shown in Fig. 1. First, the proposed KF-SDA requires initial values in terms of the unknown 
parameters, the diffusion coefficient of the system noise, the observation model, and the variance of 
the observation noise. The state vector is defined based on the initial values of the unknown parameters. 
The prior state vector 𝜽ି and the prior covariance 𝑃ି are obtained by the analytical solution of the 
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moment equation. Furthermore, in the filtering step, the Kalman gain is calculated as in the classical 
Kalman filtering approach. Here, the observation matrix 𝒄(𝑡) is defined in terms of the sensor data. 
Thus, the observation matrix should be updated after each iteration step. The prior state estimated 
values are updated using the residuals between the observation time series 𝑦(𝑡) and the predicted 
values 𝒄(𝑡)𝜽ି. Moreover, the prior covariance is updated using the Kalman gain and the observation 
model. Parameter estimation based on the proposed KF-SDA is realized by alternating between the 
prediction and filtering steps.  

3. Numerical simulation for validating the fundamental operation 
Below, we describe numerical simulations of the parameter estimation using the proposed KF-SDA. 

The fundamental operation was validated using a linear single-DOF system excited by white noise. 

3.1 Mathematical formulation 
The governing equation of a single-DOF system for a unit mass subjected to white noise is as 

follows: 
 𝑑ଶ𝑥𝑑𝑡ଶ + 𝑐 𝑑𝑥𝑑𝑡 + 𝑘𝑥 = 𝑤,                                                                 (7) 
 
where 𝑥  denotes the displacement, 𝑐  denotes the damping coefficient, 𝑘  denotes the spring 

constant, and 𝑤  denotes the white noise excitation force. Here, the signals are assumed to be 
displacement, velocity, and acceleration. The state-space representation of this single-DOF system for 
the parameter estimation problem is as follows:  
 

State equation 𝑑𝜽(𝑡)𝑑𝑡 = 𝜸𝑣(𝑡), 𝜽(𝑡) = ൤𝑘(𝑡)𝑐(𝑡)൨ , 𝜸 = ቂ11ቃ                                             (8) 
Observation equation 𝑥ሷ(𝑡) = 𝒄(𝑡)𝜽(𝑡) + 𝑤(𝑡), 𝒄(𝑡) = [−𝑥(𝑡) −𝑥ሶ(𝑡)]                                    (9) 
 
Using the above formulation of the state space representation, estimation of parameters using the 

proposed KF-SDA was conducted based on the algorithmic procedure shown in Fig. 1. 

3.2 Results of the parameter estimation 
An experiment was conducted for estimating the spring constant and the damping constant. The 

displacement, velocity and acceleration values were obtained by solving the equation of motion (Eq. 
(7)) using the Runge-Kutta method. The calculation conditions were as follows: the spring constant 
was 𝑘 = 1; the damping constant was 𝑐 = 0.01; the variance of the white noise was 𝜎௩ଶ = 1; and 
time step for the Runge-Kutta method was Δ𝑡 = 0.1. In addition, the initial conditions were 𝑥(0) =0 and 𝑣(0) = 0. Figs. 2(a)-(c) show the calculation results for the random oscillation response, where 
(a) shows the acceleration, (b) shows the velocity, and (c) shows the displacement.  

The state estimation conditions were 𝑅 = 10ଷ and 𝐷 = 0.05. Furthermore, the initial conditions 
for each moment were as follows: 𝑘(0) and 𝑐(0) were random numbers drawn from a Gaussian 
distribution, and 𝑃(0) = 𝐼. Fig. 3 shows the estimation results for the unknown parameters, where (a) 
shows the results for the spring constant, and (b) shows the result for the damping constant. In Fig. 3, 
the blue solid lines denote the estimation results obtained using the proposed KF-SDA, while the black 
dashed lines denote the actual (true) values. The estimated values obtained using the proposed KF-
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SDA converge to the actual (true) values. The estimated values for both the spring constant and the 
damping constant agreed well with the actual (true) values. 

 

 
(a) Acceleration                               (b) Velocity 

 
(c) Displacement 

Fig. 2. Random vibration responses of a single-DOF system subjected to white noise 
excitation. 

 
(a) Spring constant                         (b) Damping constant 

Fig. 3. Parameter estimation results for the spring constant and the damping coefficient, 
obtained using the proposed KF-SDA, for a single-DOF system subjected to white noise 
excitation. 

4. Applications to weakly nonlinear systems 

4.1 Third-order nonlinear system subjected to white noise excitation 

4.1.1 Mathematical formulation 
The governing equation of a third-order nonlinear system for a unit mass, subjected to white noise 

excitation is as follows:  
 𝑑ଶ𝑥𝑑𝑡ଶ + 𝑐 𝑑𝑥𝑑𝑡 + 𝑘𝑥 + 𝑘ଷ𝑥ଷ = 𝑤,                                                       (10) 
 
where 𝑥 denotes the displacement, 𝑐 is the damping coefficient, 𝑘 is the spring constant, 𝑘ଷ is 

the third-order nonlinear constant, and 𝑤 denotes the white noise excitation force. Similar to the 
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single-DOF system, we assumed displacement, velocity, and acceleration as signals. The state-space 
representation of this parameter estimation problem is as follows:  

 
State equation 𝑑𝜽(𝑡)𝑑𝑡 = 𝜸𝑣(𝑡), 𝜽(𝑡) = ቎ 𝑘(𝑡)𝑐(𝑡)𝑘ଷ(𝑡)቏ , 𝜸 = ൥111൩                                             (11) 
Observation equation 
 𝑥ሷ(𝑡) = 𝒄(𝑡)𝜽(𝑡) + 𝑤(𝑡), 𝒄(𝑡) = [−𝑥(𝑡) −𝑥ሶ(𝑡) −𝑥(𝑡)ଷ]                          (12) 
 
Using the above formulation of the state space representation, estimation of parameters using the 

proposed KF-SDA was conducted based on the algorithmic procedure shown in Fig. 1.  

4.1.2 Results of the parameter estimation 
An experiment aiming to estimate the spring constant, the third-order nonlinear spring constant, and 

the damping constant was conducted. The displacement, velocity and acceleration values were 
obtained by solving the equation of motion (Eq. (10)) using the Runge-Kutta method. The calculation 
conditions were as follows: the spring constant was 𝑘 = 1; the damping constant was 𝑐 = 0.01; the 
third-order nonlinear coefficient was 𝑘ଷ = 0.06; the variance of the white noise was 𝜎௩ଶ = 1; the 
time step for the Runge-Kutta method was Δ𝑡 = 0.1. In addition, the initial conditions were 𝑥(0) =0 and 𝑣(0) = 0.  

Fig. 4(a)-(c) show the calculation results for random oscillation response, where (a) shows the 
acceleration, (b) shows the velocity, and (c) shows the displacement.  

 

 
(a) Acceleration                               (b) Velocity 

 
(c) Displacement 

Fig. 4. Random vibration responses of a third-order nonlinear system subjected to white noise 
excitation. 
 

The state estimation conditions were 𝑅 = 10ଶ and 𝐷 = 0.05. Furthermore, the initial conditions 
for each moment were as follows: 𝑘(0), 𝑐(0), and 𝑘ଷ(0) were random numbers drawn from a 
Gaussian distribution, and 𝑃(0) = 𝐼. Fig. 3 shows the estimation results for the unknown parameters, 
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where (a) shows the results for the spring constant, (b) shows the results for the damping constant, and 
(c) shows the results for the third-order nonlinear spring coefficient. Here, the blue solid lines denote 
the estimation results obtained using the proposed KF-SDA, and the black dashed lines denote the 
actual (true) values. The estimated values obtained using the proposed KF-SDA converge to the actual 
(true) values. The estimated values of both the spring constant and damping constant agreed well with 
the true values. 

 

 
(a) Spring constant                        (b) Damping constant 

 
(c) Third-order nonlinear constant 

Fig. 5. Parameter estimation results for the spring constant, the damping coefficient and the 
third-order nonlinear spring constant, obtained using the proposed KF-SDA. 

4.2 Second-order nonlinear system subjected to white noise excitation 

4.2.1 Mathematical formulation 
The governing equation of a second-order nonlinear system for a unit mass subjected to white noise 

excitation is as follows: 
 𝑑ଶ𝑥𝑑𝑡ଶ + 𝑐 𝑑𝑥𝑑𝑡 + 𝑘𝑥 + 𝑘ଶ𝑥ଶ = 𝑤,                                                       (13) 
 
where 𝑥 denotes the displacement, 𝑐 is the damping coefficient, 𝑘 is the spring constant, 𝑘ଶ is 

the second-order nonlinear constant, and 𝑤 denotes the white noise excitation force. Here, similar to 
the single-DOF system, we assumed displacement, velocity and acceleration as signals. The state-
space representation of this parameter estimation problem is as follows:  

 
State equation 𝑑𝜽(𝑡)𝑑𝑡 = 𝜸𝑣(𝑡), 𝜽(𝑡) = ቎ 𝑘(𝑡)𝑐(𝑡)𝑘ଶ(𝑡)቏ , 𝜸 = ൥111൩                                             (14) 
Observation equation 
 𝑥ሷ(𝑡) = 𝒄(𝑡)𝜽(𝑡) + 𝑤(𝑡), 𝒄(𝑡) = [−𝑥(𝑡) −𝑥ሶ(𝑡) −𝑥(𝑡)ଶ]                                    (15) 
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Using the above formulation of the state space representation, estimation of parameters was 
accomplished using the KF-SDA, based on the algorithmic procedure in Fig. 1.  

4.2.2 Results of the parameter estimation 
An experiment was conducted for estimating the spring constant, the second-order nonlinear spring 

constant, and the damping constant. The displacement, velocity and acceleration values were obtained 
by solving the equation of motion (Eq. (13)) using the Runge-Kutta method. The calculation conditions 
were as follows: the spring constant was 𝑘 = 1; the damping constant was 𝑐 = 0.01; the third-order 
nonlinear coefficient was 𝑘ଶ = 0.05; the variance of the white noise was 𝜎௩ଶ = 1; and the time step 
of the Runge-Kutta method was Δ𝑡 = 0.1. In addition, the initial conditions were 𝑥(0) = 0 and 𝑣(0) = 0. Figs. 6(a)-(c) show the calculation results for the random oscillation response, where (a) 
shows the acceleration, (b) shows the velocity, and (c) shows the displacement. 

 

 
(a) Acceleration                               (b) Velocity 

 
(c) Displacement 

 
Fig. 6. Random vibration responses for a second-order nonlinear system subjected to white 
noise excitation. 

 
The state estimation conditions were 𝑅 = 10ଶ and 𝐷 = 0.05. Furthermore, the initial conditions 

for each moment were as follows: 𝑘(0), 𝑐(0) and 𝑘ଶ(0) were random numbers drawn from a 
Gaussian distribution, and 𝑃(0) = 𝐼. Fig. 3 shows the estimation results for the unknown parameters, 
where (a) shows the results for the spring constant, (b) shows the results for the damping constant, and 
(c) shows the results for the second-order nonlinear spring coefficient. Here, the blue solid lines denote 
the estimation results obtained using the proposed KF-SDA, and the black dashed lines denote the 
actual (true) values. The estimated values using the proposed KF-SDA converged to the actual (true) 
values. The estimated values of both the spring constant and damping constant agreed well with the 
actual values. 
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(a) Spring constant                         (b) Damping constant 

 
(c) Second-order nonlinear constant 

 
Fig. 7. Parameter estimation results for the spring constant damping coefficient and the 
second-order nonlinear spring constant using the proposed KF-SDA. 

5. Application to a single-DOF system subjected simultaneously to white noise and random 
parametric excitations 

5.1 Mathematical formulation 
Here, we consider the application of the proposed method to a single-DOF system subjected 

simultaneously to white noise and random parametric excitations. The governing equation of a single-
DOF system for a unit mass subjected simultaneously to random parametric and white noise excitations 
is 

 𝑑ଶ𝑥𝑑𝑡ଶ + 𝑐 𝑑𝑥𝑑𝑡 + (𝑘 + 𝑤ଵ)𝑥 = 𝑤ଶ,                                                       (16) 
 
where 𝑥 represents the displacement, 𝑐 is the damping coefficient, 𝑘 is the spring constant, 𝑤ଵ 

is the white random parametric excitation force, and 𝑤ଶ represents the white noise excitation force. 
The state-space representation of this parameter estimation problem is as follows:  
 

State equation 𝑑𝜽(𝑡)𝑑𝑡 = 𝜸𝑣(𝑡), 𝜽(𝑡) = ൤𝑋(𝑡)𝑐(𝑡)൨ , 𝑋(𝑡) = 𝑘(𝑡) + 𝑤ଵ(𝑡), 𝜸 = ቂ11ቃ                        (17) 
Observation equation 𝑥ሷ(𝑡) = 𝒄(𝑡)𝜽(𝑡) + 𝑤(𝑡), 𝒄(𝑡) = [−𝑥(𝑡) −𝑥ሶ(𝑡)]                                    (18) 
 
Here, a new stochastic variable 𝑋(𝑡) is introduced into the state equation. In the prediction step, 

the moment equation for first-order is as follows: 
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𝑑E[𝑋(𝑡)]𝑑𝑡 = 0, 𝑑E[𝑐(𝑡)]𝑑𝑡 = 0.                                                     (19) 
 
In Eq. (19), the right-hand-term of the first equation is rewritten using the calculation rule of the 

expected value, as E[𝑋(𝑡)] = E[𝑘(𝑡)] + E[𝑤ଵ(𝑡)] = E[𝑘(𝑡)]. Here, the mean value of 𝑤ଵ(𝑡) was 
assumed to be zero. As a result, the moment equation (Eq. (19)) describes a linear single-DOF system 
subjected to white noise. Therefore, the estimation of unknown parameters using the proposed KF-
SDA is the same as for a single-DOF system subjected simultaneously to white noise and random 
parametric excitations.  

Using the above formulation of the state space representation, estimation of parameters using the 
proposed KF-SDA was conducted based on the algorithmic procedure shown in Fig. 1.  

5.2 Results of the parameter estimation 
An experiment was conducted for estimating the spring constant and damping constant. The 

displacement, velocity, and acceleration values were obtained by solving the equation of motion (Eq. 
(16)), using the Runge-Kutta method. The calculation conditions were as follows: the spring constant 
was 𝑘 = 1; the damping constant was 𝑐 = 0.05; the variance of the parametric excitation noise was 𝜎ଵଶ = 0.1; the variance of the observation white noise was 𝜎ଶଶ = 1; and the time step of the Runge-
Kutta method was Δ𝑡 = 0.1. In addition, the initial conditions were 𝑥(0) = 0 and 𝑣(0) = 0. Figs. 
8(a)-(c) show the calculation results for the random oscillation response, where (a) shows the 
acceleration, (b) shows the velocity, and (c) shows the displacement. 

 

 
(a) Acceleration                               (b) Velocity 

 
(c) Displacement 

Fig. 8. Random vibration responses for a single-DOF system subjected simultaneously to 
white noise and random parametric excitations. 
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distribution, and 𝑃(0) = 𝐼. Fig. 9 shows the estimation results of the unknown parameters, where (a) 
shows the results for the spring constant, and (b) shows the results for the damping constant. Moreover, 
the blue solid lines denote the estimation results obtained using the proposed KF-SDA, while the black 
dashed lines show the actual (true) values. The estimated values obtained using the proposed KF-SDA 
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converge to the actual (true) values. The estimated values of both the spring constant and damping 
constant agreed well with the true values. 

 

 
Fig. 9. Parameter estimation results for the spring constant and damping coefficient, obtained 
using the proposed KF-SDA. 

6. Future work 
The method for estimation of unknown parameters that we proposed in the present study assumes 

a large number of signals. In a typical application, however, only a limited amount of data (from a 
small number of sensors) is available for analysis. Thus, future studies will seek to generalize the 
currently proposed method to cases with a small number of sensors. 

7. Conclusions 
In this study, the modified Kalman filter analysis approach (KF-SDA) that uses the solution of the 

moment equation in the prediction step was expanded to address the parameter estimation problem. 
Consequently, the following results were obtained. 

(1) The modified Kalman filter with stochastic dynamic analysis in the prediction step was 
expanded to address the parameter estimation problem. The parameter estimation problem was 
formulated by assuming that the dynamics of the unknown parameters in the system can be described 
by the Brownian motion. 

(2) The fundamental operation was validated using the stochastic responses of a single-DOF 
vibratory system subjected to white noise. The resultant estimated parameters (i.e., the spring constant 
and the damping constant) agreed well with the actual (true) values. 

(3) Application of the proposed method to a weakly nonlinear KF-SDA system was demonstrated. 
We considered the cases of third-order and second-order nonlinearities on behalf of symmetrical and 
asymmetrical nonlinearities, respectively. The resultant estimated parameters (i.e., the spring constant, 
the nonlinear spring constant, and the damping constant) agreed well with the actual (true) values. 

(4) Application of the proposed method to a single-DOF system described by a unit mass subjected 
simultaneously to random parametric and white noise excitations was considered. The parameter 
estimation problem was formulated with an additional stochastic variable, which was the sum of the 
spring constant and random parametric excitation. The resultant estimated parameters (i.e., the spring 
constant and the damping constant) agreed well with the actual (true) values. 
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