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Abstract. This paper describes a high-frequency signal estimation circuit using an analog Hilbert filter 
and multiple low-frequency sampling circuits followed by analog-to-digital converters (ADCs); here 
the sampling frequencies are relatively prime. Our proposed waveform sampling system uses aliasing 
phenomena of sampling in frequency domain proactively, and the input signal frequency can be 
estimated based on the residue number theory. A conventional high frequency sampling circuit can 
directly estimate a high frequency input signal, but handling of high frequency signals in electronic 
circuits is difficult; on the other hand, the proposed circuit is relatively easy to implement. Cosine wave 
with high frequency is provided as an input signal, and then cosine and sine signals with the same 
frequency are generated with an analog Hilbert filter (such as an RC polyphase filter); they are fed into 
sampling circuits with different (relatively prime) and low sampling frequencies. Their analog outputs 
are analog-to-digital converted and for their digital outputs, complex FFTs are performed. Since the 
high frequency signal is sampled with low frequency clocks, the aliasing (spectrum folding) occurs. 
However, each aliased frequency is different from each other because each sampling clock frequency 
is different in sampling circuits. Then based on the Chinese remainder theorem, the input frequency 
can be estimated. Notice that usage of the analog Hilbert filter is new in this paper; if the analog Hilbert 
filter is not used and the cosine input is directly sampled, the residue frequency cannot be obtained. 

  

1. Introduction 

The authors have been conducting research on applying classical mathematics to electronic circuit 
designs [1]. For example, a magic square algorithm is used to select the order of the unit circuits in a 
2-dimensional array for the unary-type DAC linearity improvement [2, 3], and a Fibonacci sequence 
is used for the redundant design to improve the reliability of successive approximation analog-to-
digital converter [4]. In this paper, we examine the method of the Chinese remainder theorem and the 
residue system algorithm written in the Chinese mathematical classic text book by the Chinese scholar 
of Sun Zu, for the frequency estimation of the sinusoidal signal waveform. The proposed circuit can 
estimate the high frequency signal, from multiple low frequency sampling circuits, combined with an 
analog Hilbert filter [5] (which is new), but without a very high frequency sampling circuit which is 
difficult to realize. Its principle and circuit configuration as well as simulation verification are shown. 
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2. Chinese Remainder Theorem 

The following problems have been written in the ancient Chinese mathematics book ‘Sun Tzu 
calculation’:  
“When an integer number is divided by 3, its residue is 2, divided by 5, its residue is 3, and divided by 
7, its residue is 2. What is the original number?”   The answer is 23. 

Generalization of this problem is the “Chinese Remainder Theorem.” This Sun Tzu calculation was 
transferred as “one hundred and five subtraction problem” to Japan, and now the Chinese remainder 
theorem has been proved by Euclidean algorithm in modern mathematics. 

An example of the residue number system is given as follows:  
Consider the natural numbers 2, 3, 5 of relatively prime. Notice N = 2 × 3 × 5 = 30, and suppose that 
one of the integers from 0 to N – 1 (= 29) is k. Also the remainder of dividing k by 2 is m1 and the 
remainder of dividing k by 3 is m2, while the remainder of dividing k by 5 is m3. The set of k and (m1, 
m2, m3) corresponds one to one (Table 1). The Chinese Remainder Theorem is an algorithm for finding 
k from (m1, m2, m3). The details of the residue number system are described in [6]. 

This residue number system has been widely used in digital arithmetic circuit design, and we have 
used in mixed-signal circuit (time-to-digital converter) design [7]. In this paper, we use it for the 
waveform sampling system. 
 

Table 1. Correspondence between an integer k  
and its residue representation (m1, m2, m3) 

 
m1 m2 m3 k  m1 m2 m3 k 
0 0 0 0  0 0 1 15 
1 1 1 1  1 1 2 16 
2 2 2 2  2 2 3 17 
0 3 3 3  0 3 4 18 
1 4 4 4  1 4 5 19 
2 0 5 5  2 0 6 20 
0 1 6 6  0 1 0 21 
1 2 0 7  1 2 1 22 
2 3 1 8  2 3 2 23 
0 4 2 9  0 4 3 24 
1 0 3 10  1 0 4 25 
2 1 4 11  2 1 5 26 
0 2 5 112  0 2 6 27 
1 3 6 13  1 3 0 28 
2 4 0 14  2 4 1 29 

3. Residue number sampling system 

3.1 Sampling theorem and aliasing phenomenon 
Waveform sampling is a technique for converting a continuous analog signal into a discrete-time 

signal [8, 9]. When the analog signal f (t) of the input frequency fin is sampled at the time interval T, 
the sampling frequency fs is represented by 1 / T. Fig. 1 shows its example; Fig.1 (a) shows an analog 
signal while Fig. 1 (b) shows its sampled signal. The pulsed discrete signal after sampling is called as 
a sampled function gs (t). If fs is higher than twice the maximum frequency of f (t), the original analog 
signal f (t) can be completely reconstructed from gs (t). This is known as the sampling theorem. 
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Fig. 1. Waveform sampling 

 
If fs is lower than or equal to twice the maximum frequency of f (t), fin cannot be distinguished from 

different continuous signals. For example, when sine waveforms with frequencies of 1 kHz and 7 kHz 
are sampled at 8 kHz, both sampling points are completely identical and indistinguishable (Fig. 2). 
This phenomenon occurs when f1 + f2 = m fs or | f1 – f2 | = n fs (m and n are integers); in Fig, 2, f1 = 1 
kHz, f2 = 7 kHz, and fs = 8 kHz with m = n = 1. This is called as the aliasing phenomenon, and here we 
use it proactively in our proposed sampling system. 

 

 
Fig. 2. Example of aliasing phenomenon 

3.2 Waveform sampling and residue frequency 
Figure 3 shows a waveform obtained by performing FFT at a sampling frequency of 8 kHz with a 

sine wave having a frequency of 30 kHz. Since this does not satisfy the sampling theorem condition, 
within the sampling frequency band, the spectrum appears to be folded at 2 kHz and 6 kHz 
symmetrically at the Nyquist frequency (8 kHz / 2 = 4 kHz). The frequency 6 kHz is the residue when 
the input frequency 30 kHz is divided by the sampling frequency of 8 kHz, and hence 6 kHz is 
interpreted as the residue frequency. Thus we remove the 2 kHz spectrum component so that we extract 
and use only the 6 kHz spectrum component here. 

 

 
Fig. 3. 30 kHz sine wave sampled at 8 kHz for FFT 
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The same spectrum as in Fig. 3 can be obtained by sampling a cosine wave with a frequency of 30 
kHz at 8 kHz and performing an FFT.  

A waveform to which a complex FFT is performed by multiplying the sine wave with a frequency 
of 30 kHz by ‘j’ which is an imaginary unit is shown in Fig. 3. In the waveform of Fig. 4, the positive 
and negative of the 2 kHz spectrum appear to be inverted (with 180° phase shift). The inverted 
spectrum is not a residue frequency. Therefore, by adding the spectrum of the cosine wave in Fig. 3 
and the spectrum of the sine wave multiplied by the imaginary unit ‘j’ in Fig. 4, only the spectrum of 
6 kHz (which is the residue frequency) can be taken out as shown in Fig. 5. 

 

 
Fig. 4. FFT of j × sin(2πfint) (fin: 30 kHz, sampling frequency: 8 kHz) 

 

 
Fig. 5. FFT of cos(2πfint) + j × sin(2πfint) (fin: 30 kHz, sampling frequency: 8 kHz) 

4. Proposed waveform sampling system for frequency estimation 

4.1 RC polyphase filter 
Here we consider an RC polyphase filter as an analog Hilbert filter, which can generate cosine and 

sine waves from a cosine wave (Fig. 6) [2]. Usage of the analog Hilbert filter in front of sampling 
circuits are new, compared to the circuit [1]. 
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Fig. 6. RC polyphase filter 

4.2 Proposed frequency estimation circuit 
The proposed frequency estimation circuit is shown in Fig. 7. First, a sinusoidal signal whose 

frequency is unknown is input to the RC polyphase filter, which generates in-phase and quadrature 
signals of the same frequency. Next, the generated signals are provided to three pairs of sampling 
circuits. Sampling frequencies for each pair need to be relatively prime. Then the residue frequency is 
determined by performing complex FFT on the output of the sampling circuit pair. Finally, the input 
frequency is estimated by the obtained residue frequency and the residue theorem [10]. 

 

 
 

Fig. 7. Proposed frequency estimation system 

4.3 Simulation verification of the proposed circuit 
Simulation settings: 

·Input frequency: 12 GHz 
·Sampling frequency: 229 kHz, 233 kHz, 239 kHz 
·Frequency resolution: 1 kHz 
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The simulation was performed with the above settings. The frequency measurement range is 
determined by the product of sampling frequencies, which is about 20 GHz obtained from the product 
of 229 kHz, 233 kHz, and 239 kHz in this case. The frequency measurement up-to about 20 GHz is 
possible using sampling frequencies of about 200 kHz. Further, a wider frequency measurement range 
can be obtained with the increase of the number of sampling circuits. Fig. 8 shows the simulation 
results where an IQ signals are generated by inputting a cosine wave to the RC polyphase filter, where 
the top graph in blue shows the I-channel input signal, the middle graph in blue shows the I-channel 
output signal and the bottom graph shows the Q-channel output signal; the IQ output signals have a 
90-degree phase difference. Notice that the Q-channel input signal is zero, i.e., its terminal is connected 
to the ground. 

 

 
 

Fig. 8. Waveform generation by RC polyphaser filter. The top waveform in blue shows the I-
channel signal, and the middle in blue shows the I-channel output signal, while the bottom 
shows the Q-channel output signal 

 
Fig. 9 shows the simulation results of sampling the obtained IQ signals at each sampling frequency. 

The results obtained by the complex FFT are shown in Fig. 10. The frequencies at the peak power in 
three spectrums are 171 kHz for 229 kHz sampling, 34 kHz for 233 kHz sampling, and 49 kHz for 239 
kHz sampling, respectively; thus the residue frequencies are 171 kHz, 34 kHz, and 49 kHz, 
respectively. Table 2 shows a part of the remainder theorem, and we see that when the residue 
frequencies are 171 kHz, 34 kHz and 49 kHz, the input frequency can be uniquely determined to be 
12 GHz. Fig. 11 shows the result obtained by simulation. 
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Fig. 9. Waveforms after sampling at each sampling frequency. In the top graph, the red shows 
the 171 kHz cosine wave with 229 kHz sampled, the blue is 34 kHz one with 233 kHz, and 
the green is 49 kHz one with 239 kHz, respectively. In the bottom graph, the dark green 
shows the 171 kHz sine wave with 229 kHz sampled, the purple is 34 kHz one with 233 kHz, 
and the brown is 49 kHz one with 239 kHz, respectively 

 
 

 
(a) 229 kHz sampling (b) 233 kHz sampling (c) 239 kHz sampling 

 
Fig. 10. Complex FFT result 
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Table 3. Residues for m1, m2, m3 and original number k  
for error frequency verification 

 
m1 m2 m3 k 
0 0 0 0 
1 1 1 1 
2 2 2 2 
⁝ ⁝ ⁝ ⁝ 

169 32 47 11999998 
170 33 48 11999999 
171 34 49 12000000 
172 35 50 12000001 
173 36 51 12000002 
⁝ ⁝ ⁝ ⁝ 

226 230 236 12752320 
227 231 237 12752321 
228 232 238 12752322 

 

 
Fig. 11. Operation of the proposed sampling system 

4.4 Simulation when the input signal has an error frequency finer than the frequency resolution 
We have examined the case where the input signal has an error frequency finer than frequency 

resolution of 1 kHz. When the 12 GHz input signal is sampled at 229 kHz and the complex FFT is 
performed, the remainder of 171 kHz when 12 GHz is divided by 229 kHz is obtained as the residue 
frequency. Next, the input signal is 12 GHz + 0.1 kHz. In this case, the residue frequency is 171.1 kHz. 
Since the frequency resolution is 1 kHz, the frequency axis spacing is 1 kHz. Therefore, the result is 
plotted closer to 171 kHz and 172 kHz. The result in this case is 171 kHz. We see from these facts that 
the result is the same when the error frequency (fe) is – 0.5 kHz ≤ fe < 0.5 kHz. Also, when the input 
signal of 12 GHz + 0.5 kHz is sampled at 229 kHz and complex FFT is performed, the residue 
frequency is 172 kHz. When a similar input signal is sampled at 233 kHz and 239 kHz, and a complex 
FFT is performed, the residue frequencies are 35 kHz and 50 kHz. Fig. 12 shows the results of this 



Journal of Mechanical and Electrical Intelligent System (JMEIS) 

33 
J. Mech. Elect. Intel. Syst., Vol.4, No.2, 2021 

simulation. Using these residue frequencies and the remainder theorem, the input signal can be 
estimated to be 12 GHz + 1 kHz from Table 3. As a result, the estimated frequency can obtain an 
accurate value even when the input signal has an error frequency finer than the frequency resolution; 
this means that the proposed sampling system can estimate the input signal frequency in a stable and 
robust way. 

 

 
(a) 229 kHz sampling (b) 233 kHz sampling (c) 239 kHz sampling 

 
Fig. 12. Complex FFT result (Error frequency verification) 

 
Table 3. Residues for m1, m2, m3 and original number k  

for error frequency verification 
 

m1 m2 m3 k 
0 0 0 0 
1 1 1 1 
2 2 2 2 
⁝ ⁝ ⁝ ⁝ 

169 32 47 11999998 
170 33 48 11999999 
171 34 49 12000000 
172 35 50 12000001 
173 36 51 12000002 
⁝ ⁝ ⁝ ⁝ 

226 230 236 12752320 
227 231 237 12752321 
228 232 238 12752322 

5. Conclusion 
We have proposed a waveform sampling circuit to estimate the frequency of a high frequency signal 

from multiple low frequency sampling circuits with an analog Hilbert filter, and confirmed by 
theoretical analysis and simulation. Since the measurement range of the input frequency is determined 
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by the product of multiple sampling frequencies, the measurable range can be wide. Therefore, by 
increasing the number of sampling circuits, the measurable frequency becomes very wide [11].  

Notice that several sampling circuits using the residue number system have been investigated such 
as [9], and the originality of this paper is usage of an analog Hilbert filter (RC polyphaser filter), and 
this can be one of candidates for such sampling circuits and one of applications for the RC polyphase 
filter. We have also confirmed that it is possible to estimate close frequency value even if the input 
signal frequency has some deviation. 
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