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Abstract. This paper proposes the modified Kalman filter in order systematically to deal with a 
nonlinear system and a parametric uncertainty excitation system. Conventional Kalman type filtering 
problem for linear system with parametric uncertainties is based on a linear-Gaussian process. 
Therefore, this type state estimator cannot be applied to the nonlinear system. Hence, the Kalman filter 
methodology that can systematically account for the nonlinear and the parametric uncertainty 
excitation systems is desirable. The present study proposes a modified Kalman filter incorporating 
stochastic dynamic analysis (KF-SDA) in the prediction step to deal with the abovementioned systems 
systematically. The proposed KF-SDA algorithm will be derived using the solution of moment 
equation. Moreover, a fundamental verification will be performed for a single degree-of-freedom 
(DOF) system and two-DOF system subjected to white noise excitation. The state estimation of the 
single-DOF system, which is simultaneously subjected to white noise and stochastic parametric 
excitations, will be considered. Furthermore, the state estimation of the nonlinear single-DOF system 
subjected to the white noise excitation will be performed. 

  

1. Introduction 
The filtering problem is significant challenge in various industrial areas, such as aerospace, signal 

processing of precise instruments, and agriculture. Classical filtering was introduced by N. Wiener in 
the 1940s [1]. Twenty years later, Kalman and Bucy achieved successful implementation of filtering 
in digital processing [2,3]. In particular, considering the modeling uncertainty is important for the 
precise evaluation of an un-observed state vector. In fact, many studies have investigated the Kalman 
filter considering the modeling uncertainty [4,5,6]. The modeled system parameters by random 
perturbations based on stochastic models with a time-dependent noise (or multiplicative noise). 

A Kalman-type filtering problem for a linear system with parametric uncertainties is presented 
[6,7,8]. In this work, a Luenberger observer-type filter was derived in a continuous-time stochastic 
system [7]. Furthermore, the Kalman-type filtering problem for a linear system subject to parametric 
uncertainty excitation was expanded to a discrete-time system [8]. These previous works conducted 
benchmark tests with the classical Kalman filter. Subsequently, the accuracy in these works was higher 
than that obtained using its classical counterpart.  

However, this type of state estimator cannot be applied to a nonlinear system, because it is based 
on a linear Gaussian process. Therefore, the Kalman filter methodology that can systematically account 
for the nonlinear and parametric uncertainty excitation systems is desirable. 

The present study proposes a modified Kalman filter incorporating stochastic dynamic analysis 
(KF-SDA) in the prediction step to deal with the abovementioned systems systematically. The moment 
equation of probabilistic dynamics is described as the stochastic dynamics consisting of nonlinear / 
non-Gaussian characteristics. The methodology between the nonlinear and parametric uncertainty 
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excitation systems will be realized systematically using the solution of moment equation in the 
prediction procedure of a conventional linear-Gaussian Kalman filter. 

The proposed KF-SDA algorithm will be derived using the solution of moment equation. Moreover, 
a fundamental verification will be performed for a single degree-of-freedom (DOF) system and two-
DOF system subjected to white noise excitation. The state estimation of the single-DOF system, which 
is simultaneously subjected to white noise and stochastic parametric excitations, will be considered. 
Furthermore, the state estimation of the nonlinear single-DOF system subjected to the white noise 
excitation will be performed. 

2. Modified Kalman filter using solution of moment equation 
The KF-SDA is obtained by replacing the formula of the prediction process in the conventional 

Kalman filter. The prediction step in the conventional Kalman filter is composed of the update state 
estimation value and update error covariance matrices. The update formula is based on the analytical 
solution of the Ito probabilistic differential equation of a linear system. Contrary to the previous 
Kalman filter, replacing the Ito probabilistic differential equation with the moment equation is 
considered in the prediction procedure herein. 

The Ito probabilistic differential equation is represented by Eq. (1). 
 𝑑𝒙𝑑𝑡 = 𝜙(𝒙, 𝑡) + 𝛾(𝒙, 𝑡)𝑾(𝑡),                                                         (1) 
 
where, 𝒙 represents the state vector of 1 × 𝑛 size and 𝜙(𝒙, 𝑡) represents the system dynamics. 

For example, the system dynamics in the linear case is 𝜙(𝑥, 𝑡) = 𝐴𝒙(𝑡). The right hand second term 
of 𝛾(𝒙, 𝑡)𝑾(𝑡) represents the white noise excitation. The moment equation is as follows: 

 𝑑𝐸[ℎ]𝑑𝑡 = ෍ 𝐸 ൤𝜙௜ ൬ 𝜕ℎ𝜕𝑥௜൰൨ + ෍ ෍ 𝐸 ቈቆ 𝜕ଶℎ𝜕𝑥௜𝜕𝑥௝ቇ [𝛾𝐷𝛾்]௜,௝቉௡
௝ୀଵ

௡
௜ୀଵ

௡
௜ୀଵ                          (2) 

 
The moment equation represents the time evolution of each moment. Here, the right-hand first term 

represents the contribution from the first-order moment, while the right-hand second term represents 
the contribution from the second-order moment. 𝐸[∙] represents the expected values for calculation. ℎ denotes the products of the probabilistic variables. For example, ℎ = 𝑥ଵ௜ 𝑥ଶ௝ … 𝑥௡௞. Furthermore, the 
notation for the moment of 𝑚௜௝…௞ is introduced to obtain a simple description (i.e. 𝑚௜,௝,…௞ = 𝐸[ℎ]). 
The index of 𝑖, 𝑗, … , 𝑘 has the constraints by the moment order. For example, in case of the first-order 
moment, the constraint is 𝑖 + 𝑗 + ⋯ + 𝑘 = 1(i.e., the index combinations are 𝑖 = 1, 𝑗 = 0, … , 𝑘 = 0, 𝑖 = 0, 𝑗 = 1, … , 𝑘 = 0, and 𝑖 = 0, 𝑗 = 0, … , 𝑘 = 1). Moreover, 𝐷 represents the diffusion coefficient. 
The moment equation is numerically solved by the Runge-Kutta method.  

Fig.1 shows the algorithmic flowchart of the KF-SDA. At first, the proposed KF-SDA required 
initial values in terms of moment, diffusion coefficient of the system noise, observation model, and 
variance of the observation noise. The state vector was defined based on the initial value of the moment 
and update state vector. The state vector was identified as the first-order moment. In the prediction 
step, the moment equation was numerically solved by the Runge-Kutta method. The prior state vector 
of 𝒙ି and prior covariance of 𝑃ି were obtained by solving the moment equation. Furthermore, in 
the filtering step, the Kalman gain was calculated based on the procedure of the ordinal linear Kalman 
filter. The prior state estimation values were updated by the residual between the observation time 
series of 𝑦(𝑡), prediction values of 𝒄𝒙ି and observation model of 𝒄. Moreover, the prior covariance 
of 𝑃ି was updated by the Kalman gain and observation model.  
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The procedure of proposed KF-SDA was realized by alternating between the prediction step and 
filtering steps.  

 

 
 

Fig. 1 Algorithmic flowchart of the proposed modified Kalman filter (KF-SDA). 

3. Numerical simulation for the fundamental operation verification 
In this section, we will conduct numerical simulations using the proposed KF-SDA. The numerical 

simulations consider two examples. First, the fundamental operation verification is conducted using a 
linear single-DOF system subjected to white noise excitation. Second, the extensibility to the multi-
DOF system is verified using a linear two-DOF system subjected to white noise excitation.  

3.1 Single-DOF system subjected to white noise excitation 

3.1.1 Details of the formulation 
The governing equation of the single-DOF system in the case of a unit mass, subjected to white 

noise excitation, is as follows: 
 𝑑ଶ𝑥𝑑𝑡ଶ + 𝑐 𝑑𝑥𝑑𝑡 + 𝑘𝑥 = 𝑤,                                                                 (3) 
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where, 𝑥 represents the displacement; 𝑐  represents the damping coefficient; 𝑘 represents the 
spring constant; and 𝑤 represents the white noise excitation force. Eq. (3) is rewritten to the form of 
the Ito probabilistic differential equation as follows:  

 𝑑𝑑𝑡 ቂ𝑥ଵ𝑥ଶቃ = ቂ 0 1−𝑘 −𝑐ቃ ቂ𝑥ଵ𝑥ଶቃ + ቂ01ቃ 𝑤,   𝜙 = ቂ 0 1−𝑘 −𝑐ቃ ,   𝛾 = ቂ01ቃ,                       (4) 
 
where, 𝑥ଵ and 𝑥ଶ represent the displacement and velocity, respectively. Therefore, the moment 

equation is derived as follows:  
 
Moment equation in terms of the first-order moment 
 𝑑𝑑𝑡 ቂ𝑚ଵ଴𝑚଴ଵቃ = ቂ 0 1−𝑘 −𝑐ቃ ቂ𝑚ଵ଴𝑚଴ଵቃ                                                        (5) 
 
Moment equation in terms of the second-order moment 
 𝑑𝑑𝑡 ൥𝑚ଶ଴𝑚ଵଵ𝑚଴ଶ൩ = ൥ 0 2 0−𝑘 −𝑐 10 −2𝑘 −2𝑐൩ ൥𝑚ଶ଴𝑚ଵଵ𝑚଴ଶ൩ + ൥ 002𝐷൩                                      (6) 

 
Here, 𝑚ଵ଴  represents the first-order moment of 𝑚ଵ଴ = 𝐸[𝑥ଵଵ𝑥ଶ଴] = 𝐸[𝑥ଵ], 𝑚଴ଵ  represents the 

first-order moment of 𝑚଴ଵ = 𝐸[𝑥ଵ଴𝑥ଶଵ] = 𝐸[𝑥ଶ], 𝑚ଶ଴ represents the second-order moment of 𝑚ଶ଴ =𝐸[𝑥ଵଶ𝑥ଶ଴] = 𝐸[𝑥ଵଶ] , 𝑚ଵଵ  represents the second-order moment of 𝑚ଶ଴ = 𝐸[𝑥ଵଵ𝑥ଶଵ] = 𝐸[𝑥ଵ𝑥ଶ]  and 𝑚଴ଶ  represents the second-order moment of 𝑚଴ଶ = 𝐸[𝑥ଵ଴𝑥ଶଶ] = 𝐸[𝑥ଶଶ] . Eqs. (5) and (6) are 
numerically solved by the Runge-Kutta method. Here, the observation time series is supposed to 
displacement signal. The observation model of 𝒄 is 

 𝒄 = [1 0].                                                                         (7) 
 
The prior state vector of 𝒙ି and prior covariance of 𝑃ି are represented in Eq. (8) as. 
 𝒙ି = ቂ𝑚ଵ଴𝑚଴ଵቃ,   𝑃ି = ቂ𝑚ଶ଴ 𝑚ଵଵ𝑚ଵଵ 𝑚଴ଶቃ                                                    (8) 

3.1.2 Result of the state estimation 
In this section, the estimation experiment for the non-observed velocity is conducted under the 

displacement measurement. The true displacement and velocity values are obtained by solving the 
equation of motion (Eq. (3)) using the Runge-Kutta method.  

The calculation conditions are as follows: spring constant 𝑘 = 1; damping constant 𝑐 = 0.05; 
variance of white system noise 𝜎௩ଶ = 1; and time increment for the Runge-Kutta method Δ𝑡 = 0.1. 
Additionally, the initial conditions are 𝑥(0) = 0 and 𝑣(0) = 0. The true values of the displacement 
and the velocity of each oscillator are represented by the solid black line in Fig. 2. Fig. 2(a) shows the 
state estimation result for the displacement, while Fig. 2(b) depicts that for the velocity. The state 
estimation conditions are 𝑅 = 10ିଵ  and 𝐷 = 0.05 . Furthermore, the initial conditions of each 
moment are as follows: 𝑚ଵ଴(0) = 0; 𝑚଴ଵ(0) = 0; 𝑚ଶ଴(0) = 1; 𝑚ଵଵ(0) = 0; and 𝑚଴ଶ(0) = 1.  

The solid blue line in Fig. 2 depicts the state estimation results for the displacement and velocity. 
Additionally, the estimation values of both displacement and velocity were in good agreement with 
the true values. Here, correlation coefficient between the true signal X and the estimated signal Y 
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defines as the 𝜌(𝑋, 𝑌) = 𝐸[(𝑋 − 𝐸[𝑋])(𝑌 − 𝐸[𝑌])]/ඥ𝐸[(𝑋 − 𝐸[𝑋])ଶ]𝐸[(𝑌 − 𝐸[𝑌])ଶ] . Then, the 
correlation coefficients between the true and estimated signals were 0.9812 and 0.9613 for the 
displacement and velocity, respectively. The correspondence between the true values and the 
estimation values is confirmed in the case of differ initial condition of KF-SDA (for example, the case 
of 𝑚ଵ଴(0) = 0.3, 𝑚଴ଵ(0) = 0, the case of 𝑚ଵ଴(0) = 0, 𝑚଴ଵ(0) = 0.3 and the case of 𝑚ଵ଴(0) =0.3; 𝑚଴ଵ(0) = 0.3, and so on). 

 

 
 

(a) Displacement                                 (b) Velocity 
 

Fig. 2 State estimation results for displacement and velocity using the proposed KF-SDA in 
the single-DOF system subjected to white noise excitation. 

3.2 Two-DOF system subjected to white noise excitation 

3.2.1 Details of the formulation 
The governing equation of the two-DOF system in the case of the unit mass subjected to white noise 

excitation is as follows: 
 𝑑ଶ𝑢ଵ𝑑𝑡ଶ + 𝑘𝑢ଵ + 𝑘(𝑢ଵ − 𝑢ଶ) − 2𝑐 𝑑𝑢ଵ𝑑𝑡 + 𝑐 𝑑𝑢ଶ𝑑𝑡 = 𝑤,𝑑ଶ𝑢ଶ𝑑𝑡ଶ + 𝑘𝑢ଶ + 𝑘(𝑢ଶ − 𝑢ଵ) − 2𝑐 𝑑𝑢ଶ𝑑𝑡 + 𝑐 𝑑𝑢ଵ𝑑𝑡 = 0.                                      (9) 

 
Where, 𝑢ଵ  and 𝑢ଶ  represent the displacements of first and second oscillators, respectively; 𝑐 

represents the damping coefficient; 𝑘 represents the spring constant; and 𝑤 represents the white 
noise excitation force.  

Eq. (9) is rewritten to the form of the Ito probabilistic differential equation, as follows:  
 𝑑𝑑𝑡 ቎𝑥ଵ𝑥ଶ𝑥ଷ𝑥ସ቏ = ൦ 𝑥ଶ−2𝑘𝑥ଵ + 𝑘𝑥ଷ − 2𝑐𝑥ଶ + 𝑐𝑥ସ𝑥ସ𝑘𝑥ଵ − 2𝑘𝑥ଷ + 𝑐𝑥ଶ − 2𝑐𝑥ସ ൪ + ቎0100቏ 𝑤,                                   (10) 

 
where, 𝑥ଵ and 𝑥ଶ represent the displacement and velocity of the first oscillator, respectively, and 𝑥ଷ and 𝑥ସ represent the displacement and velocity of the second oscillator, respectively. Therefore, 

the moment equation is derived as follows:  
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Moment equation in terms of the first-order moment 
 𝑑𝑑𝑡 ቎𝑚ଵ଴଴଴𝑚଴ଵ଴଴𝑚଴଴ଵ଴𝑚଴଴଴ଵ቏ = ൦ 𝑚ଵ଴଴଴−2𝑘𝑚ଵ଴଴଴ − 2𝑐𝑚଴ଵ଴଴ + 𝑘𝑚଴଴ଵ଴ + 𝑐𝑚଴଴଴ଵ𝑚଴଴଴ଵ𝑘𝑚ଵ଴଴଴ + 𝑐𝑚଴ଵ଴଴ − 2𝑘𝑚଴଴ଵ଴ − 2𝑐𝑚଴଴଴ଵ ൪                         (11) 

 
Moment equation in terms of the second-order moment 
 

𝑑𝑑𝑡
⎣⎢⎢
⎢⎢⎢
⎢⎢⎡
𝑚ଶ଴଴଴𝑚ଵଵ଴଴𝑚ଵ଴ଵ଴𝑚ଵ଴଴ଵ𝑚଴ଶ଴଴𝑚଴ଵଵ଴𝑚଴ଵ଴ଵ𝑚଴଴ଶ଴𝑚଴଴ଵଵ𝑚଴଴଴ଶ⎦⎥⎥

⎥⎥⎥
⎥⎥⎤ =

⎣⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎡ 2𝑚ଵଵ଴଴𝑚଴ଶ଴଴ − 2𝑘𝑚ଶ଴଴଴ + 𝑘𝑚ଵ଴ଵ଴ + 𝑐𝑚ଵ଴଴ଵ − 2𝑐𝑚ଵଵ଴଴𝑚଴ଵଵ଴ + 𝑚ଵ଴଴ଵ𝑚଴ଵ଴ଵ + 𝑘𝑚ଶ଴଴଴ − 2𝑘𝑚ଵ଴ଵ଴ + 𝑐𝑚ଵଵ଴଴ − 2𝑐𝑚ଵ଴଴ଵ−4𝑘𝑚ଵଵ଴଴ + 2𝑘𝑚଴ଵଵ଴ + 2𝑐𝑚଴ଵ଴ଵ − 4𝑐𝑚଴଴଴ଶ−2𝑘𝑚ଵ଴ଵ଴ + 𝑘𝑚଴଴ଶ଴ + 𝑐𝑚଴଴ଵଵ − 2𝑐𝑚଴ଵଵ଴ + 𝑚଴ଵ଴ଵ−2𝑘𝑚ଵ଴଴ଵ + 𝑘𝑚଴଴ଵଵ + 𝑐𝑚଴଴଴ଶ − 4𝑐𝑚଴ଵ଴ଵ + 𝑘𝑚ଵଵ଴଴ − 2𝑘𝑚଴ଵଵ଴ + 𝑐𝑚଴ଶ଴଴2𝑚଴଴ଵଵ𝑚଴଴଴ଶ + 𝑘𝑚ଵ଴ଵ଴ − 2𝑘𝑚଴଴ଶ଴ + 𝑐𝑚଴ଵଵ଴ − 2𝑐𝑚଴଴ଵଵ2𝑘𝑚ଵ଴଴ଵ − 4𝑘𝑚଴଴ଵଵ + 2𝑐𝑚଴ଵ଴ଵ − 4𝑐𝑚଴଴଴଴ଶ ⎦⎥⎥

⎥⎥⎥
⎥⎥⎥
⎥⎤

+
⎣⎢⎢
⎢⎢⎢
⎢⎢⎡

00002𝐷00000 ⎦⎥⎥
⎥⎥⎥
⎥⎥⎤       (12) 

 
Eqs. (11) and (12) are numerically solved by the Runge-Kutta method. Here, the observation time 

series is displacement signal of the first oscillator. The observation model of 𝒄 is as follows: 
 𝒄 = [1 0 0 0].                                                                (13) 
 
The prior state vector of 𝒙ି and the prior covariance of 𝑃ି are represented in Eq. (14) as. 
 𝒙ି = ቎𝑚ଵ଴଴଴𝑚଴ଵ଴଴𝑚଴଴ଵ଴𝑚଴଴଴ଵ቏,   𝑃ି = ቎𝑚ଶ଴଴଴ 𝑚ଵଵ଴଴𝑚ଵଵ଴଴ 𝑚଴ଶ଴଴ 𝑚ଵ଴ଵ଴ 𝑚ଵ଴଴ଵ𝑚଴ଵଵ଴ 𝑚଴ଵ଴ଵ𝑚ଵ଴ଵ଴ 𝑚଴ଵଵ଴𝑚ଵ଴଴ଵ 𝑚଴ଵ଴ଵ 𝑚଴଴ଶ଴ 𝑚଴଴ଵଵ𝑚଴଴ଵଵ 𝑚଴଴଴ଶ቏                               (14) 

3.2.2 Results of the state estimation 
In this section, the estimation experiments for the non-observed displacement of the second 

oscillator and non-observed velocity of the two oscillators are conducted under the displacement 
measurement of the first oscillator. The true values of the displacement and velocity signals are 
obtained by solving the equation of motion (Eq. (9)) using the Runge-Kutta method. 

The calculation conditions are as follows: spring constant 𝑘 = 1; the damping constant 𝑐 = 0.01; 
variance of white system noise 𝜎௩ଶ = 1; and time increment for the Runge-Kutta method Δ𝑡 = 0.1. 
The initial conditions are 𝑥ଵ(0) = 𝑥ଶ(0) = 0  and 𝑣ଵ(0) = 𝑣ଶ(0) = 0 . The true values of the 
displacement and the velocity of each oscillator are represented by the solid black line in Fig. 3. Fig. 
3(a) shows the state estimation result for the displacement of the first oscillator, while (b) depicts that 
for the displacement of the second oscillator. Fig.3 (c) illustrates the state estimation result for the 
velocity of the first oscillator, while Fig. 3(d) displays that for the second oscillator. The state 
estimation conditions are 𝑅 = 10ିଵ and 𝐷 = 0.05 . The initial conditions of each moment are: 𝑚ଵ଴଴଴(0) = 0 ; 𝑚଴ଵ଴଴(0) = 0 ; 𝑚଴ଵ଴଴(0) = 0 ; 𝑚଴଴଴ଵ(0) = 0 ; 𝑚ଶ଴଴଴(0) = 1 ; 𝑚ଵଵ଴଴(0) = 0 ; 𝑚ଵ଴ଵ଴(0) = 0 ; 𝑚ଵ଴଴ଵ(0) = 0 ; 𝑚଴ଶ଴଴(0) = 1 ; 𝑚଴ଵଵ଴(0) = 0 ; 𝑚଴ଵ଴ଵ(0) = 0 ; 𝑚଴଴ଶ଴(0) = 1 ; 𝑚଴଴ଵଵ(0) = 0; and 𝑚଴଴଴ଶ(0) = 1.  

The estimation results for the displacement and velocity are represented by the solid blue line in 
Fig. 3. Additionally, the estimation values of both displacement and velocity were in good agreement 
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with the true values. The correlation coefficients between the true and estimated signals were 0.9843 
for the displacement of the first oscillator, 0.9800 for the velocity of the first oscillator, 0.9247 for the 
displacement of the second oscillator, and 0.9741 for the velocity of the second oscillator.  

 

  
 

(a) Displacement of 1st oscillator                (b) Displacement of 2nd oscillator 

  
 

(c) Velocity of 1st oscillator                      (d) Velocity of 2nd oscillator 
 

Fig. 3 State estimation results for displacement and velocity using the proposed KF-SDA in 
case of the two-DOF system subjected to white noise excitation. 

4. Application to the single-DOF system simultaneously subjected to white noise and random 
parametric excitations 

4.1 Details of the formulation 
The governing equation of the single-DOF system in the case of the unit mass simultaneously 

subjected to the random parametric and white noise excitations is 
 𝑑ଶ𝑥𝑑𝑡ଶ + 𝑐 𝑑𝑥𝑑𝑡 + (𝑘 + 𝑤ଵ)𝑥 = 𝑤ଶ,                                                       (15) 
 
where, 𝑥 represents the displacement; 𝑐  represents the damping coefficient; 𝑘 represents the 

spring constant; 𝑤ଵ represents the white random parametric excitation force; and 𝑤ଶ represents the 
white noise excitation force. 

0.0 50.0 100.0 150.0 200.0
t [s]

-4.0

-2.0

0.0

2.0

4.0

0.0 50.0 100.0 150.0 200.0
t [s]

-4.0

-2.0

0.0

2.0

4.0

0.0 50.0 100.0 150.0 200.0
t [s]

-4.0

-2.0

0.0

2.0

4.0

0.0 50.0 100.0 150.0 200.0
t [s]

-4.0

-2.0

0.0

2.0

4.0



Journal of Mechanical and Electrical Intelligent System (JMEIS) 

15 
J. Mech. Elect. Intel. Syst., Vol.3, No.3, 2020 

Eq. (15) is rewritten to the form of the Ito probabilistic differential equation as follows:  
 𝑑𝑑𝑡 ቂ𝑥ଵ𝑥ଶቃ = ቂ 𝑥ଶ−𝑐𝑥ଶ − 𝑘𝑥ଵቃ + ൤ 0 0−𝑥ଵ 1൨ ቂ𝑤ଵ𝑤ଶቃ.                                            (16) 
 
where, 𝑥ଵ  and 𝑥ଶ  represent the displacement and the velocity, respectively. Therefore, the 

moment equation is derived as follows: 
 
Moment equation in terms of the first-order moment 
 𝑑𝑑𝑡 ቂ𝑚ଵ଴𝑚଴ଵቃ = ቂ 0 1−𝑘 −𝑐ቃ ቂ𝑚ଵ଴𝑚଴ଵቃ.                                                        (17) 
 
Moment equation in terms of the second-order moment 
 𝑑𝑑𝑡 ൥𝑚ଶ଴𝑚ଵଵ𝑚଴ଶ൩ = ൥ 2𝑚ଵଵ−𝑘𝑚ଶ଴ − 𝑐𝑚ଵଵ + 𝑚଴ଶ−2𝑘𝑚ଵଵ − 2𝑐𝑚଴ଶ + 2𝐷ଵଵ𝑚ଶ଴ − 4𝐷ଵଶ𝑚ଵ଴൩ + ൥ 002𝐷ଶଶ൩.                  (18) 

 
Eqs. (17) and (18) are numerically solved by the Runge-Kutta method. Here, the observation time 

series is displacement signal. The observation model of 𝒄 is as follows:  
 𝒄 = [1 0].                                                                       (19) 
 
The prior state vector of 𝒙ି and prior covariance of 𝑃ି are represented in Eq. (20) as 
 𝒙ି = ቂ𝑚ଵ଴𝑚଴ଵቃ,   𝑃ି = ቂ𝑚ଶ଴ 𝑚ଵଵ𝑚ଵଵ 𝑚଴ଶቃ.                                                   (20) 

4.2 Results of the state estimation 
In this section, the estimation experiment for the non-observed velocity is conducted under the 

displacement measurement. The true values of the displacement and the velocity are obtained by 
solving the equation of motion (Eq. (15)) using the Runge-Kutta method. The calculation conditions 
are: spring constant 𝑘 = 1 ; damping constant 𝑐 = 0.05 ; variance of white parametric random 
excitation 𝜎ଵଶ = 10ିଵ; variance of white system noise 𝜎ଶଶ = 1; and time increment for the Runge-
Kutta method Δ𝑡 = 0.1. The initial conditions are 𝑥(0) = 0 and 𝑣(0) = 0. 

The true values of the displacement and the velocity are represented by the solid black line in Fig. 
4. Fig. 4(a) shows the state estimation result for the displacement, while Fig.4(b) depicts that for the 
velocity. The state estimation conditions are: 𝑅 = 10ିଵ; 𝐷ଵଵ = 5 × 10ିସ; 𝐷ଵଶ = 0.05. Furthermore, 
the initial conditions of each moment are: 𝑚ଵ଴(0) = 0; 𝑚଴ଵ(0) = 0; 𝑚ଶ଴(0) = 1; 𝑚ଵଵ(0) = 0; 
and 𝑚଴ଶ(0) = 1. 

The estimation results for the displacement and the velocity are represented by the solid blue line 
in Fig. 4. Additionally, the estimation values of both displacement and velocity are in good agreement 
with the true values. The correlation coefficients between the true and estimated signals were 0.9904 
and 0.9819 for the displacement and the velocity, respectively.  
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(a) Displacement                                (b) Velocity 
 

Fig. 4 State estimation results for displacement and velocity using the proposed KF-SDA in 
the single-DOF system simultaneously subjected to white noise and random parametric 
excitations. 

5. Application to the Duffing system subjected to white noise excitation 

5.1 Details of the formulation 
The government equation of the Duffing system in the case of the unit mass subjected to white noise 

excitation is as follows: 
 𝑑ଶ𝑥𝑑𝑡ଶ + 𝑐 𝑑𝑥𝑑𝑡 + 𝑘𝑥 + 𝜇𝑥ଷ = 𝑤,                                                          (21) 
 
where, 𝑥 represents the displacement; 𝑐  represents the damping coefficient; 𝑘 represents the 

spring constant; 𝜇  represents the nonlinear spring coefficient; and 𝑤  represents the white noise 
excitation force. Eq. (21) is rewritten to the form of the Ito probabilistic differential equation as 
follows: 

 𝑑𝑑𝑡 ቂ𝑥ଵ𝑥ଶቃ = ൤ 𝑥ଶ−𝑘𝑥ଵ − 𝜇𝑥ଵଷ − 𝑐𝑥ଶ൨ + ቂ01ቃ 𝑤,                                             (22) 
 
where, 𝑥ଵ  and 𝑥ଶ  represent displacement and velocity, respectively. Therefore, the moment 

equation is derived as follows:  
 
Moment equation in terms of the first-order moment 
 𝑑𝑑𝑡 ቂ𝑚ଵ଴𝑚଴ଵቃ = ቂ 𝑚଴ଵ−𝑘𝑚ଵ଴ − 𝑐𝑚଴ଵቃ.                                                        (23) 
 
Moment equation in terms of the second-order moment 
 𝑑𝑑𝑡 ൥𝑚ଶ଴𝑚ଵଵ𝑚଴ଶ൩ = ቎ 2𝑚ଵଵ𝑚଴ଶ − 𝑘𝑚ଶ଴ − 3𝜇𝑚ଶ଴ଶ − 𝑐𝑚ଵଵ−2𝑘𝑚ଵଵ − 2𝑐𝑚଴ଶ ቏ + ൥ 002𝐷൩.                                  (24) 
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Eq. (24) contains the third-order moment term of 𝑚ଷ଴ in spite the second-order moment equation. 
Thus, the moment equation cannot solve the numerically and analytically, the characteristics so called 
the moment closure. The approximation is required the retaining the moment closure. Here, 𝑚ଷ଴ was 
neglected in the derivation process of the first-order moment. Moreover, the odd-th higher moments 
were neglected as well, and the even-th higher moments approximated the relationship of 𝑚ଶ௡ = 1 ∙3 ∙∙∙∙∙ (2𝑛 − 1)𝑚ଶ௡.  

Eqs. (23) and (24) are numerically solved by the Runge-Kutta method. The observation time series 
is displacement signal. The observation model of 𝒄 is presented as follows: 

 𝒄 = [1 0].                                                                        (25) 
 
The prior state vector of 𝒙ି and the prior covariance of 𝑃ି are represented in Eq. (26) as 
 𝒙ି = ቂ𝑚ଵ଴𝑚଴ଵቃ,   𝑃ି = ቂ𝑚ଶ଴ 𝑚ଵଵ𝑚ଵଵ 𝑚଴ଶቃ.                                                  (26) 

5.2 Results of the state estimation 
The estimation experiment for the non-observed velocity was conducted under the displacement 

measurement. The true values of the displacement and the velocity were obtained by solving the 
equation of motion (Eq. (21)) using the Runge-Kutta method. The calculation conditions are as 
follows: spring constant 𝑘 = 1; damping constant 𝑐 = 0.05; nonlinear spring constant 𝜇 = 0.1; 
variance of white system noise 𝜎௩ଶ = 1; and time increment for the Runge-Kutta method Δ𝑡 = 0.1. 
The initial conditions are 𝑥(0) = 0 and 𝑣(0) = 0. 

 

 
 

(a) Displacement                                (b) Velocity 
 

Fig. 5 State estimation results for displacement and velocity using the KF-SDA in the case of 
the nonlinear single-DOF system subjected to white noise excitation (the case of 𝜇 = 0.1). 
 

The true values of the displacement and the velocity are represented by the solid black line in Fig. 
5. Fig. 5(a) shows the state estimation result for the displacement, while (b) shows that for the velocity. 
The state estimation conditions are: 𝑅 = 10ିଵ and 𝐷 = 0.05. The initial conditions of each moment 
are as follows: 𝑚ଵ଴(0) = 0 ; 𝑚଴ଵ(0) = 0 ; 𝑚ଶ଴(0) = 1 ; 𝑚ଵଵ(0) = 0 ; and 𝑚଴ଶ(0) = 1 . The 
estimation results of the displacement and the velocity are represented by the solid blue line in Fig. 5. 
Additionally, the estimation values of both displacement and velocity were in good agreement with 
the true values. The correlation coefficients between the true and estimated signals were 0.9813 and 
0.9311 for the displacement and the velocity, respectively.  
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In this case, the relationship between the restoring force 𝐹(𝑥) and the displacement 𝑥 is in Fig. 
6. The white noise has the variance of system noise 𝜎௩ଶ = 1. Thus, the dominant component of white 
noise amplitude is in ±3 [N] (3𝜎௩ region i.e. contains 99.7%). Hence, the displacement response 
contains the area between around ±2 [m]. Therefore, the calculation condition represents the weakly 
nonlinear characteristics. 

 

 
 

Fig. 6 Relationship between restoring force and displacement. 
 

 
 

(a) Displacement                                (b) Velocity 
 

Fig. 7 State estimation results for displacement and velocity using the KF-SDA in the case of 
the nonlinear single-DOF system subjected to white noise excitation (the case of 𝜇 = 0.2). 

 
Moreover, the case of more strongly nonlinear (𝜇 = 0.2) is considered. The true values of the 

displacement and the velocity are represented by the solid black line in Fig. 7. In addition, the 
estimation results of the displacement and the velocity are represented by the solid blue line in Fig. 7. 
The correlation coefficients between the true and estimated signals were 0.9782 and 0.9218 for the 
displacement and the velocity, respectively. In case of the more strongly nonlinearity (i.e. more than 𝜇 ≥ 0.2), the correlation coefficient is decreased less than 0.9. 

6. Extensibility to the filtering problem of the non-Gaussian/nonlinear system 
The KF-SDA proposed in this study can be expanded to a non-Gaussian system, nonlinear system, 

combination system of the two systems, etc. The prediction step is required for the appropriate 
replacement of the moment equation described in the stochastic dynamics. 
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Conversely, the dynamics of the complex probabilistic difference equation has been considered by 
many researchers [9,10,11]. As a classic example, the Fokker-Planck equation of the single-DOF, 
which was a nonlinear restoring force, was solved analytically by Caughey [12]. The analysis method 
of response distribution and transient moment under non-Gaussian excitation have recently been 
proposed in the area of continuous time stochastic dynamics [13,14,15]. These research results are 
expected to contribute to the evolution of the proposed filter. 

7. Conclusion 
This study proposed a modified Kalman filter (KF-SDA) using the solution of the moment equation 

in the prediction step. The following results were obtained. 
(1) The modified Kalman filter was introduced based on the solution of the moment equation. In 

the algorithm, the prediction step was replaced by the solution of the moment equation from the 
solution of a linear Gaussian evolution process. Through this procedure, the prediction step can 
describe the unsteady/non-Gaussian/nonlinear response. 

(2) The fundamental operation of the proposed Kalman filter was verified using a single-DOF 
system and two-DOF system subjected to white noise excitation. Subsequently, the estimation 
operation of the unknown state vector was confirmed.  

(3) The state estimation was performed in terms of single-DOF system, which was simultaneously 
subjected to white noise and stochastic parametric excitations to exhibit the extensibility of the 
proposed modified Kalman filter. Consequently, the estimation operation of the unknown state vector 
was confirmed. 

(4) The state estimation was performed in terms of a Duffing system, which was subjected to white 
noise excitation to exhibit the applicability of the proposed modified Kalman filter to a nonlinear 
system. Consequently, the estimation operation of the unknown state vector was confirmed.  
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