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Abstract. This paper discusses a new identification method of linear single-degree-of-freedom system 
using Gaussian random vibration response. The propose method is based on the method of Maximum 
Likelihood Estimation (MLE). The likelihood function of proposed method is composed from the 
analytical solution of Fokker-Planck equation. The estimation formulas of unknown parameter are 
obtained by maximization of the original likelihood function. The obtained estimators correspond with 
population variance estimation of multivariate Gaussian model. Furthermore, the numerical 
identifications are conducted using the random vibration response by calculation result of 4th Runge-
Kutta method. In the result, the estimation performance of the propose method is confirmed in terms 
of dependency of sample number and dependency of damping coefficient. Especially, the proposed 
method is implied the application to identification problem of large damping system. Quantification 
of large damping characteristic is important problem, because it is very difficult problem in 
conventional identification method. Moreover, the benchmark tests are conducted with Half-Power 
Method (HPM) based on the spectral analysis and Auto-Regressive Method (ARM) based on the time 
series analysis, respectively. The results of benchmark are shown in the accuracy of propose method 
is higher than its of HPM and ARM, respectively. Finally, the expansion to recursive estimation 
algorithm is conducted using MLE estimator of recurrence form. In addition, operation of the recursive 
algorithm is confirmed. 

1. Introduction 
The system identification method using random vibration response is traditionally used in the field 

of mechanical structural vibration. The method using the auto-regressive time series analysis is the 
most widely known method [1,2,3,4]. Because it only needs output data and obtaining the input data 
is generally difficult in field test, Auto-Regressive Method (ARM) is often used in actual field data. 
However, because of its dependency on output data, its accuracy in variance of prediction error is low. 
In recent years, the ARX model which uses input-output data solves the above problem [5,6].  

Operational modal analysis (OMA) is recently developing in the field of stochastic signal 
processing technologies [7,8,9,10]. In OMA, the mode shape visualization and the estimation of modal 
parameters are conducted using frequency response based on modal expansion, which uses white noise 
excitation as input. The modal shape in actual structure can then be understood using OMA. It is 
available to data analysis in actual field sensor data. However, because it is based on the frequency 
method, OMA cannot be applied to large damping structural and material systems, especially in 
resonance spectrum [11]. 

In this paper, we propose an identification method based on the probability density function. The 
shape of the probability density function obeys system parameters such as spring constant, damping 
constant, and diffusion coefficient of input white noise. The characteristics are unrelated to frequency 
spectrum and correlation function. Thus, a method based on the probability density function is 
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expected to apply to large damping vibratory system. In linear and weakly nonlinear systems that are 
subjected to white random noise excitation, the analytical solution of Fokker-Planck equation can also 
be obtained [12,13,14]. In this study, we propose a new function using the analytical solution of 
Fokker-Planck equation. Moreover, the unknown parameter estimation formula has been derived using 
Maximum Likelihood Estimation (MLE). 

2. Derivation of the Identification Algorithm 
In this chapter, the proposed identification algorithms are derived based on the method of MLE. 

The equation of motion in single-degree-of-freedom (dof) system in case of unit mass is as follows: 
 𝑑ଶ𝑥(𝑡)𝑑𝑡ଶ + 𝑐 𝑑𝑥(𝑡)𝑑𝑡 + 𝑘𝑥(𝑡) = 𝑤(𝑡)                                                     (1) 
 
Here, 𝑤(𝑡) denotes the white noise, 𝑁(0, 𝜎௪ଶ ), whereas, 𝜎௪ଶ  represents the variance of input 

white noise. Its probabilistic differential equation is shown in the Eq. (2) with state variables, 𝑥ଵ =𝑥(𝑡) and 𝑥ଶ(𝑡) = 𝑑𝑥ଵ(𝑡)/𝑑𝑡. 
 𝑑𝑑𝑡 ቂ𝑥ଵ𝑥ଶቃ = ቂ 𝑥ଶ−𝑘𝑥ଵ − 𝑐𝑥ଶቃ + ቂ01ቃ 𝑤(𝑡)                                                 (2) 
 
Using the above equations, the Fokker-Planck equation is as follows:  
 𝜕𝑓(𝑥ଵ, 𝑥ଶ, 𝑡)𝜕𝑡 = −𝑥ଶ 𝜕𝑓(𝑥ଵ, 𝑥ଶ, 𝑡)𝜕𝑥ଵ + (𝑘𝑥ଵ + 𝑐𝑥ଶ) 𝜕𝑓(𝑥ଵ, 𝑥ଶ, 𝑡)𝜕𝑥ଶ + 𝑐𝑓(𝑥ଵ, 𝑥ଶ, 𝑡) + 𝐷 𝜕ଶ𝑓(𝑥ଵ, 𝑥ଶ, 𝑡)𝜕𝑥ଶଶ   (3) 

 
Here, 𝑓(𝑥ଵ, 𝑥ଶ, 𝑡) and 𝐷 represent the probability density function of the stochastic response and 

the diffusion coefficient, respectively.  
The analytical solution of stationary Fokker-Planck equation is as follows: 
 𝑓௦(𝑥ଵ, 𝑥ଶ) = 𝑐√𝑘2𝜋𝐷 exp ቂ− 𝑐2𝐷 (𝑘𝑥ଵଶ + 𝑥ଶଶ)ቃ                                           (4) 
 
Eq. (4) contains the parameters 𝑘  and 𝐷/𝑐  and the stationary distribution is represented by 𝑓௦(𝑥ଵ, 𝑥ଶ).  
In this paper, we will propose an estimation method of unknown parameters, 𝑘 and 𝐷/𝑐, based 

on MLE. Here, the likelihood function is defined by the analytical solution of the Fokker-Planck 
defined in Eq. (4) and is observed as time series data. The observed time series data contain the 
displacement, 𝑥ଵ , and velocity, 𝑥ଶ ; data sets are 𝐃 =൛൫𝑥ଵ,ଵ, 𝑥ଶ,ଵ൯, ൫𝑥ଵ,ଵ, 𝑥ଶ,ଵ൯, … , ൫𝑥ଵ,ఈ, 𝑥ଶ,ఈ൯ … , ൫𝑥ଵ,ே, 𝑥ଶ,ே൯ൟ. Therefore, the likelihood function is defined 
as follows: 

 𝐿 = ෑ 𝑐√𝑘2𝜋𝐷 exp ቂ− 𝑐2𝐷 (𝑘𝑥ଵఈଶ + 𝑥ଶఈଶ )ቃே
ఈୀଵ = ቆ𝑐√𝑘2𝜋𝐷ቇே exp − 𝑐2𝐷 (𝑘𝑥ଵఈଶ + 𝑥ଶఈଶ )ே

ఈୀଵ ൩         (5) 

 
Using MLE, the negative log-likelihood function is assumed as follows: 
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𝐽 = − log 𝐿 = − log ቆ𝑐√𝑘2𝜋𝐷ቇே൩ + 𝑐2𝐷 (𝑘𝑥ଵఈଶ + 𝑥ଶఈଶ )ே
ఈୀଵ                              (6) 

 
In the process of MLE, the negative log-likelihood function is partially differentiated using the 

unknown parameters, 𝑘 and 𝐷/𝑐. Moreover, because the case of differentiated likelihood is 0, the 
maximum likelihood estimators are obtained as follows: 

 𝑘ୣୱ୲ = ∑ 𝑥ଶఈଶேఈୀଵ∑ 𝑥ଵఈଶேఈୀଵ                                                                    (7) 𝐷ୣୱ୲𝑐ୣୱ୲ = 1𝑁  𝑥ଶఈଶே
ఈୀଵ                                                                   (8) 

 
Eq. (7) and Eq. (8) are equal to the variances of analytical solution with respect to displacement, 𝑥ଵ, and velocity, 𝑥ଶ, in the stationary Fokker-Planck equation. Therefore, our proposed method is 

essentially equal to the variance estimation problem.  

3. Numerical Simulation 
In this chapter, we will verify operation of the proposed identification method by using the 

numerical consideration. In addition, the proposed method is compared with the Half Power Method 
(HPM) that is based on the frequency response method, and ARM that is based on the time series 
analysis. 

3.1 Conditions 
To identify the unknown system parameters, the time series is generated using the method of 4-th 

order Runge-Kutta. In HPM, the half spectrum is calculated by Fast Fourier Transform (FFT, there is 
no window function when the number of samples is 8192), associated with auto-correlation function 
of displacement response of 1-dof subjected to white noise excitation. Furthermore, the spring constant 
is estimated by the resonance frequency and the ratio between diffusion coefficient; while the damping 
constant is estimated by the resonance amplitude and the width of half power point in the half spectrum.  

In ARM, AR coefficient and prediction error are calculated by the Yule-Walker method using the 
displacement response of 1-dof subjected to white noise excitation. The spring constant and damping 
constant are estimated by eigen frequency and damping ratio using AR coefficients. Furthermore, the 
diffusion coefficient is estimated using the variance of prediction error signal.  

3.2 Result and Discussion 

3.2.1 Dependency on the Number of Samples 

The dependencies of the number of samples are shown in Fig. 1: the spring constant is 𝑘 = 1.2; 
the damping constant is 𝑐 = 0.1; variance of input white noise excitation is 𝜎௪ଶ = 1; initial conditions 
are 𝑥(0) = 0 and 𝑣(0) = 0; and the sampling period is Δ𝑡 = 0.1. The left graph of (a) represents 
the estimation result of spring constant; the right graph of (b) represents the estimation result of the 
ratio between diffusion coefficient and damping constant. In addition, the blue, red, green, and black 
dotted lines show the result of the proposed method, ARM, HPM, and the true values, respectively.  

Focus on the estimation result of spring constant. The estimation values converge to the true values 
when the samples are at least 2000 in all estimation methods. On the other hand, the estimation values 
are not in agreement with the true values when there are less than 100 samples in all methods. The 
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proposed method has the least error values which is less than 10% when the number of samples ranges 
from 100 to 2000.  

In the case of HPM, the error between estimation and true values is approximately 20%. HPM is 
calculated using the FFT of the auto-correlation function. The auto-correlation function consists of the 
sum of the noise signal and the periodic signal of the forced vibration. Thus, the FFT of the periodic 
signal is independent of the noise signal. As the results showed, the decline of accuracy does not occur 
when the samples are low. Here, the accuracy of HPM is less than the proposed method.  

In the case of ARM, high estimation errors of more than 90% have been observed. Generally, ARM 
has higher accuracy of estimation performance than the FFT method in low sample conditions. 
However, the estimation accuracy decreased when there were less than 500 samples. In addition, the 
accuracy of ARM is less than the HPM and the proposed method. Therefore, the result shows the 
applicable limits of ARM.  

Furthermore, focus on the estimation result of the ratio between the diffusion coefficient and the 
damping constant. The proposed method converges to the true value with increasing number of 
samples. The estimation errors between the estimation and true values are at the smallest in our 
proposed method. The proposed method has an estimation error of 30% in the range of over 1000 
samples. Between 100 to 1000 samples, the estimation error is approximately 40%. Moreover, with 
samples less than 100, the estimation error is over 100%.  

In the case of HPM, the fluctuation of estimation values increased with increasing number of 
samples; especially, in the case of samples less than 100, the estimation value is not obtained in order 
to estimate the resonance frequency is 0. On the other hand, in the case of ARM, errors between 
estimation and true values occurred in the 103 number of samples.  

 

 
(a) the case of spring constant          (b) the case of ratio between diffusion 

                                  coefficient and damping coefficient 
Fig. 1. Benchmark test results in terms of sample number dependency. 

3.2.2 Dependency on the Damping Coefficients 
The dependencies of the damping constant are shown in Fig. 2: the spring constant is 𝑘 = 1.2; 

variance of input white noise excitation is 𝜎௪ଶ = 1; initial conditions are 𝑥(0) = 0 and 𝑣(0) = 0; 
sampling period is Δ𝑡 = 0.1.; and the damping constants are in the range of 𝑐 = 0.01 to 𝑐 = 10. 
The left graph of (a) represents the estimation result of spring constant while the right one of (b) 
represents the estimation result of the ratio between diffusion coefficient and damping constant. In 
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addition, the blue, red, green, and black dotted lines show the result of proposed method, ARM, HPM, 
and the true values, respectively. 

Here, the focus is on the estimation result of spring constant (in case of (a)). Our proposed method 
is in good agreement with the true values throughout the range of values of the damping constant. On 
the other hand, HPM and ARM are not in agreement with the true values when the damping constant 
is between 0.5 and 1.8. Our proposed method is based on the variance ratio of probability density 
function between displacement and velocity. The probability density functions are obtained both in 
low signal and high noise levels. As a result, the variance ratio of probability density function between 
displacement and velocity can be precisely calculated. The proposed method estimates using the raw 
time series data and is independent of the auto-correlation function and frequency spectrum data. 

On the other hand, HPM and ARM are based on frequency and auto-correlation function domains. 
In these methods, the noise component is more dominant than the signal. As a result, the spring 
constant evaluated is less than true values.  

Furthermore, focus on the estimation result of the ratio between the diffusion coefficient and the 
damping constant (in case of (b)). The proposed method is in good agreement with the true values 
throughout the entire range of ratio between diffusion coefficient and damping constant. HPM is not 
in agreement with the true values when 𝑐 > 0.8. ARM is not in agreement with the true values 
throughout the entire range of the D/c parameter. 

 

 
(a) the case of spring constant            (b) the case of ratio between diffusion 

coefficient and damping coefficient 
Fig. 2. Benchmark test result in terms of damping coefficient dependency. 

4. Extension to the Recursive Algorithm 
This chapter discusses the expansion of the above proposed method to the recursive algorithm to 

save the capacity of the memory. The recurrence formula is derived by the relationship of the root 
mean square as follows:  

 𝑘ୣୱ୲[𝑗] = 𝑓[𝑗]𝑔[𝑗]                                                                      (9) 
 𝑓[𝑗] = 𝑗 − 1𝑗 𝑓[𝑗 − 1] + 1𝑗 𝑥ଶଶ[𝑗]                                                    (10) 
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𝑔[𝑗] = 𝑗 − 1𝑗 𝑔[𝑗 − 1] + 1𝑗 𝑥ଵଶ[𝑗]                                                   (11) 
 
Here, the initial values of 𝑓[0] and 𝑔[0] are zeros. In addition, variable 𝑗 represents an integer 

to distinguish it from the continuous time variable, 𝑡. The ratio between the diffusion coefficient and 
the damping constant is as follows: 

 𝐷ୣୱ୲𝑐ୣୱ୲ [𝑗] = 𝑗 − 1𝑗 𝐷ୣୱ୲𝑐ୣୱ୲ [𝑗 − 1] + 1𝑗 𝑥ଶଶ[𝑗]                                           (12) 

 
The initial value is obtained as a result of the above batch processing algorithm. The estimation 

results using Eq. (9) ~ (12) are shown in Fig. 3. Here, the horizontal axes represent the time; the vertical 
axes represent the spring constant (a) and the ratio between the diffusion coefficient and the damping 
constant (b). The blue solid and black dotted lines show the estimation values of the unknown 
parameter and true values, respectively. Here, the spring constant is 𝑘 = 1.2; the damping constant is 𝑐 = 0.5; variance of input white noise excitation is 𝜎௪ଶ = 1; initial conditions are 𝑥(0) = 0 and 𝑣(0) = 0; and the sampling period is Δ𝑡 = 0.1. 

The estimation results of both the spring constant and the ratio between the diffusion coefficient 
and damping constant converge to the true values. Therefore, the operation of recursive algorithm is 
verified. With the proposed online estimation algorithm, t should be greater than 500 to converge with 
true values, with the number of samples being 5000. On the other hand, 1000 samples are necessary 
for the above batch processing. Therefore, the number of samples for the proposed recursive algorithm 
is approximately the same as number of samples of the above batch algorithm.  

 

  
(a) the case of spring constant                (b) the case of ratio between diffusion 

                                                 coefficient and damping coefficient 
Fig. 3. Estimation result using the proposed online estimation algorithm. 

5. Damping Coefficients Dependency on Recursive Algorithm 
In this chapter, the damping coefficient dependency of the recursive algorithm is considered. Here, 

the spring constant is 𝑘 = 1.2; variance of input white noise excitation is 𝜎௪ଶ = 1; initial conditions 
are 𝑥(0) = 0 and 𝑣(0) = 0; sampling period is Δ𝑡 = 0.1; and the damping constants are between 𝑐 = 0.1 to 𝑐 = 10. The recursive algorithm is performed till 2000 s; then, the ratio between the true 
and estimation value is calculated by the converged estimation value using the proposed algorithm. 
The estimation results are shown in Fig. 4 and 5. In Fig. 4, the horizontal axis represents the damping 
coefficient while the vertical axis represents the ratio between true value and estimation value. The 
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centers of the ratio is near the value of 1 and fluctuates in the 0.8 ~ 1.2 range. The operation of the 
proposed algorithm to estimate the spring constant is confirmed in the large damping system. 
Furthermore, focus on the estimation result of ratio between the diffusion coefficient and the damping 
constant in Fig. 5. The ratio between the diffusion coefficient and the damping constant decreases as 
the damping constant increases and slightly fluctuates between 0.9 and 1.05. The operation of the 
proposed algorithm to estimate the ratio between the diffusion coefficient and the damping constant is 
confirmed in the large damping system. 

 

  
 

Fig. 4. Damping coefficient dependency on estimation accuracy in case of spring constant. 
 

 
 

Fig. 5. Damping coefficient dependency on estimation accuracy in case of ratio between 
diffusion coefficient and damping coefficient. 
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6. Conclusions 
In this paper, we discussed the identification method based on the MLE using analytical solution of 

Fokker-Planck equation. As the result, the following results are obtained. 
(1) Estimation formulas of the spring constant and the ratio between the diffusion coefficient and 

the damping constant were derived using MLE method using Analytical solution of Fokker-Planck 
equation.  

(2) The benchmark tests in terms of estimation accuracy were conducted in cases of HPM and ARM, 
respectively. As the result, our proposed method showed the most accuracy in cases of the number of 
samples dependence and damping constant dependence.  

(3) The expansion to the recursive algorithm were conducted beyond the batch processing algorithm. 
In addition, the estimation experiments were conducted using the numerical simulation. 

(4) The verification of proposed method in terms of estimation accuracy were conducted. As the 
result, our proposed method showed the applicability to large damping system.  
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