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Abstract. Daily exercise is necessary for the elderly to stay healthy. In order for the elderly to engage 
in appropriate amount of activity, they need a way to record daily physical activity. Previous studies 
on physical activity estimation identified the need for new device as well as significant errors in 
physical activity as challenges. Therefore, in this study, we improved the problems of the inertial 
measurement unit(IMU)-based cane measurement devices that estimate physical activity in previous 
study. Specifically, we solved the dataset and activity recognition model. We also considered the data 
segment size and IMU combination patterns. We further evaluated the proposed method by physical 
activity estimation error. The 300 sample segment size was optimal, and there was no significant 
difference in accuracy by IMU combination patterns. The physical activity estimation error was 7.37%. 
The proposed system was more accurate and easier to estimate physical activity than existing activity 
meters. 

1. Introduction 
According to the World Health Organization, between 2020 and 2050, the global population over 

60 will double (2.1 billion), and by 2030, one in six people worldwide will be more than 60 [1]. 
Additionally, obesity among the elderly over 65 years of age is increasing worldwide [2], and the 
elderly need physical activity because obesity causes an age-related decline in physical function [3]. 
Approximately 28.9% of the current Japanese population is over 65 years old [4], and the mortality 
rate associated with lifestyle-related diseases, such as hypertensive heart diseases and diabetes, is 
26.5% [5]. Daily exercise is considered necessary to maintain and improve health, including preventing 
lifestyle-related diseases [6]. An index called the physical activity METs*h indicates the amount of 
daily exercise a person has performed. Physical activity can be calculated by multiplying the metabolic 
equivalent of task (MET) determined for each activity of daily living (ADL) by the activity time (hour). 
It is defined that those aged 65 or older need a physical activity of 10 METs*h to stay healthy, 
according to the Ministry of Health, Labor and Welfare of Japan [7]. Therefore, it is necessary to 
monitor physical activity to prevent lifestyle-related diseases in the elderly. 

Several inertial measurement unit (IMU)-based methods have been developed to estimate physical 
activity. For example, E. Sazonov et al. [8] proposed a system to estimate physical activities such as 
walking, standing upright, sitting, and cycling by attaching five pressure sensors and a single IMU to 
both shoes. However, the large size of the device makes it difficult to use in daily life. Nathan et al. 
[9] estimated energy expenditure (EE) at rest and during activity for middle-aged and older adults; 
acceleration sensors were attached to three locations at the center of gravity, hip joint, and ankle, and 
a formula for calculating the physical activity was obtained for each sensor by multiple regression 
analysis. Jaime et al. [10] estimated the physical activity at 10 different walking speeds with three 
IMUs attached to the wrist and thigh. The physical activity estimation was validated using equations 
that calculate EE differently for men and women. However, it has been found that estimating physical 
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activity by equation does not use age as an input; therefore, it cannot accurately estimate the physical 
activity of the elderly. Zachary et al. [11] estimated walking, running, and resting physical activity 
with four different smartwatches with embedded IMUs and compared them to physical activity derived 
from indirect calorimetry. As a result, even with the highest physical activity estimation accuracy, the 
average absolute error of the activity measurement was reported to be 35.4%. Furthermore, Patrick et 
al. [12] developed a highly accurate physical activity estimation system using an IMU attached to the 
thigh to solve the problem of large physical activity estimation errors in smartwatches. The ability to 
recognize movements of the lower extremities, rather than from the wrist or trunk, indicates that it can 
monitor activity with greater accuracy than a smartwatch. However, most previous studies required 
that new devices and sensors be always worn on the body. From a usability perspective, it is 
psychologically burdensome for the elderly to use these devices in their daily lives. Therefore, it is 
necessary to develop a system that can estimate physical activity with high accuracy without requiring 
special equipment or being worn at all times. 

With the rapid growth of the world’s elderly population, the use of assistive devices has become 
increasingly important. In 2000, approximately 6.1 million residents used mobility aids, such as canes, 
walkers, and crutches, two-thirds of whom were over the age of 65 [13]. According to a survey on the 
use of welfare equipment by the elderly, 51.7% of men and 71.8% of women who need assistance use 
a cane [14]. Considering that many elderly people use canes, we developed a cane measurement device 
with two attached IMUs in our laboratory to recognize four ADLs (walk, stand to sit/sit to stand, go 
upstairs, and go downstairs) and attempted to estimate physical activity [15]. However, several issues 
emerged, such as “the need to measure multiple activities continuously rather than individually,” “the 
need to measure data on staircase activities over a long time,” “the need to add a new ADL to the 
recognition target,” and the “need to make the activity recognition model more accurate.” 

In this study, we created a dataset of continuous activities with new ADLs using the Elderly 
Experience Kit (Sanwa Manufacturing Co., Ltd., Japan, Tokyo). We proposed a model that can 
accurately recognize activities using deep learning. Additionally, we considered the data segment size 
and IMU combination patterns to improve accuracy and reduce the cost of the cane measurement 
device. We further evaluated the proposed method by physical activity estimation error based on the 
results for data segment size and IMU combination patterns. 

The remainder of this paper is organized as follows. In Section 2, the cane measurement device and 
flow of physical activity estimation in previous studies are explained. The proposed dataset and activity 
recognition model are also explained in this section. In Section 3, we discuss the subjects and Elderly 
Experience Kit, as well as the multiple activities that were continuously measured. Section 4 presents 
the experimental results and discussion. Finally, Section 5 presents the conclusion. 

2. Proposed System 

2.1 Previous study on a cane measurement device for physical activity estimation 

2.1.1 Cane measurement device 
Two IMUs (LP-WS1104, 9-axis wireless motion sensor; Logical Products Corporation, Japan, 

Fukuoka) were attached to a T-cane handle and cane tip. Figure 1 shows the positions where IMUs are 
attached. The 3-axis acceleration and angular velocity obtained from the IMUs at 100 Hz sampling 
frequency were used for activity recognition by machine learning [15]. The target activities included 
four ADLs (walk, stand to sit/sit to stand, go upstairs, and go downstairs). The physical activity 
METs*h was estimated using the METs defined for each ADL multiplied by the activity time (hour) 
obtained from the activity recognition model. Figure 2 shows an overview of the physical activity 
estimation flow with the cane measurement device. 
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Fig. 1. The positions where IMUs are attached to a T-cane. 

 

 
Fig. 2. Overview of the physical activity estimation flow with a cane measurement device. 

2.1.2 Data segmentation 
The 3-axis acceleration and angular velocity obtained from the IMU were segmented using the 

sliding window method. The sliding window method is a preprocessing method for time-series data to 
obtain features by dividing the data into certain intervals, and it is often used in the activity recognition 
field [16]. The size of an interval for segmentation is called the window size, and it is well-known that 
the window size affects the activity recognition accuracy [16]. The sliding window method also allows 
segments to cover a certain percentage of the window, which is called the overlap rate. In this paper, 
the overlap rate was set to 50%, following previous study on activity recognition [17]. Figure 3 shows 
an example of a data segmentation using sliding window method. 

 
Fig. 3. Example of a data segmentation using sliding window method. 
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2.1.3 Activity recognition using machine learning 
In a previous study [15], the k-nearest neighbor (k-NN) was used for machine learning of activity 

recognition. The k-NN is a supervised machine learning algorithm that determines labels for unknown 
data by majority voting based on k neighborhood samples. The accuracy of the model is evaluated by 
F-measure. F-measure is the value of the harmonic mean of Precision and Recall. F-measure is 
obtained in the range of 0 to 1. The closer F-measure is to 1, the higher the recognition accuracy of the 
model. The average of the highest F-measure for the four ADLs recognized by k-NN was 0.735, 
indicating low activity recognition accuracy as an issue. 

2.1.4 Calculation of physical activity 
Table 1 shows the METs defined for each ADL [4,18]. The physical activity (METs*h) was 

calculated by multiplying the METs of the activity label obtained from Subsection 2.1.3 by the activity 
time from the input data length. For example, when one “walk” label was recognized with a window 
size of 300 samples and an overlap rate of 50%, physical activity was estimated by assuming that 1.5 
× 1/3600 hours of walking was performed and multiplying it by 3 METs.  
 

Table 1. METs defined for each ADL 

 

2.1.5 Problems identified in the previous study 
There were four problems with the cane measurement device in previous study. First, although data 

were obtained from the elderly, sufficient data on “go upstairs” and “go downstairs” were not gathered 
because of the experimental setup and physical ability of the elderly. Then, the recognition accuracy 
was low because of insufficient learning by machine learning. Second, it was not possible to segment 
the data during activity transitions because the four ADLs were measured individually. Therefore, it is 
necessary to verify whether activity recognition can be performed during motion transitions. Third, 
“walk” was output when the patient was standing upright; therefore, physical activity could not be 
estimated correctly. Thus, it is necessary to add “stand upright” to the measurement target to estimate 
physical activity more accurately in daily life. Fourth, the average of the highest F-measure for the 
four ADLs was not high. Thus, we propose a new method to solve these four issues. 

2.2 Proposed method 

2.2.1 Creating a new dataset with the Elderly Experience Kit 
To solve the problem of the small amount of data on “go upstairs” and “go downstairs,” a previous 

study proposed a method that used the Elderly Experience Kit (Sanwa Manufacturing Co., Ltd., Japan, 
Tokyo) to create a dataset. This kit could make the young movements resemble those of the 
elderly.[19,20]; as shown in Figure 4, the elbow/knee supporter made elbows/knees difficult to bend, 
the 1-kg weight band made the legs difficult to lift, and the weighted vest with four 1-kg weights made 
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it difficult to move the entire body. Furthermore, the slouching posture was forced by a slouching 
postural experience belt. 

  
  (a) Front view of the subject                    (b)Side view of the subject 
 

Fig. 4. Elderly Experience Kit worn by the subject. 
 

To validate the activity recognition accuracy made during the activity transition, we continuously 
measured multiple activities to create a dataset, as explained in Section 3. Additionally, the “stand 
upright” position was added to activity recognition to more accurately estimate the physical activity in 
daily life. 

2.2.2 Activity recognition model using deep learning 
In this study, the proposed method used a deep learning model. Table 2 summarizes previous studies 

on activity recognition using deep learning models. In the activity recognition field, several models 
have been proposed using convolutional neural networks (CNNs) [21,22]. CNN is a deep learning 
model commonly used in image processing to extract features of IMU waveform shapes. Additionally, 
many models have been proposed using long short-term memory (LSTM) [23,24]. LSTM is a deep 
learning model commonly used for training time-series data, and it can extract the time variation of 
IMU waveforms as features. It has also been shown that combining CNN and LSTM allows for 
recognizing activity more accurately than each individually [25,26]. Furthermore, comparative 
experiments have shown that bidirectional gated recurrent unit (BiGRU), which can learn from past 
time-series data, as LSTM does, and new time-series data, can identify actions with higher accuracy 
than LSTM [27]. Therefore, the proposed method uses a deep learning model that combines CNN and 
BiGRU to recognize activity. 
 

Table 2. Previous studies on activity recognition using deep learning 
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CNN is a deep learning model commonly used in image processing, devised from the structure of 
the viewing angle of living organisms [21]. It can extract the shape features of the IMU waveform by 
shifting and multiplying the input data by numerical data called a kernel for each set stride size. 
Convolving an input vector 𝐱 ∈ 𝑅௡ and a filter vector 𝐟 ∈ 𝑅௠ takes an output vector 𝐜 ∈ 𝑅௡ି௠ାଵ. 
Each element is 𝐜௜ = 𝐟்𝐱[௜:௜ା௠ିଵ] and can be computed as a scalar product of the vector f and the 
corresponding part of x. Furthermore, the proposed method used max pooling to enhance the output 
after convolution. Max pooling is a method for dividing output data by pooling size and extracting 
only the data with the largest value among the divided data. 

GRU is a deep learning model that uses a gating mechanism to solve the gradient loss problem that 
makes long-term learning of recurrent neural networks difficult. GRU can be weighted for temporal 
dependencies by the reset and update gates. A unit of the GRU is shown in Figure 5. The update gate 
adjusts the rate of memorizing new memories, and the weight of the update rate 𝑧௧ can be obtained 
using equation (1) of the input data 𝑥௧. The reset gate also adjusts the forgetting rate of the memory, 
and the weight of the forgetting rate 𝑟௧ can be obtained using equation (2). The weight 𝑟௧ of the 
forgetting rate can then be used to obtain ℎ෨௧  to update the memory using equation (3). The final 
process is to update the long-term memory ℎ௧  by weighting ℎ௧ିଵ and ℎ෨௧  using the update ratio 
weight 𝑧௧, respectively, and then using equation (4). BiGRU is an extension of GRU, a deep learning 
model that learns from the past order of time-series data and the new order [27]. 
 𝑧௧ = 𝜎(𝑊௭𝑥௧ + 𝑈௭ℎ௧ିଵ + 𝑏௭) (1) 

 𝑟௧ = 𝜎(𝑊௥𝑥௧ + 𝑈௥ℎ௧ିଵ + 𝑏௥) (2) 
 ℎ෨௧ = 𝑡𝑎𝑛ℎ{𝑊௛𝑥௧ + 𝑈௛(𝑅௧ ⊙ ℎ௧ିଵ) + 𝑏௛} (3) 
 ℎ௧ = (1 − 𝑧௧) ∘ ℎ෨௧ିଵ + 𝑧௧ ∘ ℎ௧ (4) 

 

 
 

Fig. 5. Unit of the GRU. 
 

The proposed model consists of a parallel combination of CNN layers using multiple CNNs and 
BiGRU layers using BiGRUs. Figure 6 shows an overall view of the combined model. Figures 7 and 
8 show the models of the CNN and BiGRU layers, respectively. The proposed method also used the 
rectified linear unit as an activation function to suppress overlearning and performed batch 
normalization in the dimensional direction of features when merging data. We used the dropout layer 
to learn while inactivating a certain percentage of nodes. The final output was determined based on a 
softmax layer. 
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Fig. 6. Overall view of the proposed model. 

 
Fig. 7. Model of the CNN layers. 

 
Fig. 8. Model of the BiGRU layers. 

3. Experiment 
In this experiment, we measured the data used to train a cane measurement device. The subjects 

were 10 healthy young adults (8 males and 2 females; age: 23 ± 0.63 years old; body height: 1.69 ± 
0.85 × 10ିଵ m; body weight: 65.9 ± 14 kg). The length of the cane was decided by placing the cane 
0.15 m forward and 0.15 m to the side from the cane user's toes, with the handle coming to the hand 
with the elbow bent 30°. All participants received a description of this study and signed a written 
informed consent form before participating. All experimental procedures were approved by the Ethics 
Committee for Human Research of the Graduate School of Life Science and Systems Engineering, 
Kyushu Institute of Technology (approval number: 22-10). 

Subjects were asked to wear the Elderly Experience Kit and perform five ADLs (walk, stand to 
sit/sit to stand, go upstairs, go downstairs, and stand upright) in succession. The flow of continuous 
multiple activities was as follows: (1) walk (3 m), (2) stand to sit/sit to stand, (3) walk (3 m), (4) stand 
to sit/sit to stand, (5) walk (5 m), (6) go downstairs (12 steps), (7) go upstairs (12 steps), and (8) stand 
upright. 
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   (a-1) Acceleration                           (a-2) Angular velocity  

(a) Walk 
 

  
  (b-1) Acceleration                          (b-2) Angular velocity  

(b) Stand to sit/Sit to stand 
 

  
  (c-1) Acceleration                          (c-2) Angular velocity  

(c) Go upstairs 
 

  
 (d-1) Acceleration                           (d-2) Angular velocity  

(d) Go downstairs 
 

  
 (e-1) Acceleration                           (e-2) Angular velocity  

(e) Stand upright                               
 

Fig. 9. Typical acceleration and angular velocity of five ADLs. 

] 
] 

] 
] 
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Five measurements were taken for each subject, and the model was trained for each subject using 
the leave-one-out method. For labeling, a button switch was attached to a data logger (wireless 8-
channel logger, LP-WS1311; Logical Products Corporation, Japan, Fukuoka). The switch was pressed 
at the time when the activity changed, and the motion was labeled as changed at 5 V. The IMU was 
controlled by the LabVIEW (National Instrument Corporation, USA, State of Texas)-based software 
(LP-WSD009-0A; Logical Product Corporation, Japan) and started and stopped the measurements 
wirelessly. The IMU data were saved to a PC via a USB-wired connection. Figure 9 shows typical 
acceleration and angular velocity of five ADLs. 

Since the proposed method used a sliding window method for IMU data segmentation, we compared 
the activity recognition accuracy for each activity when the window size was changed to 100, 200, and 
300 samples to investigate whether the activity recognition accuracy was improved. The F-measure, 
i.e., the recognition accuracy of each subject’s activities, was compared when the window size was 
changed. To reduce the system’s cost, we compared the recognition accuracy among the patterns using 
Sensor_1 and Sensor_2, Sensor_1 only, and Sensor_2 only. Here Sensor_1 was the IMU on the cane 
handle, and Sensor_2 was on the cane tip, as shown in Figure 1. For comparison, we used accuracy, 
which is a measure of recognition accuracy per subject. Furthermore, we evaluated the physical activity 
estimation error based on the results of the window size and IMU combination patterns. As a statistical 
analysis, significant differences between the window size and IMU combination patterns were 
evaluated using the Mann–Whitney’s U test (significance level, p < 0.05). Statistical analysis was 
performed using Easy R(EZR) [28]. 

4. Results and Discussion  
Figure 10 shows a box-and-whisker diagram of the F-measure for the five activities of the model 

trained for each window size. The results showed significant differences by changing the window size 
in the two activities of “stand to sit/sit to stand” and “go downstairs.” There was a significant difference 
between 100 and 300 samples for “stand to sit/sit to stand.” 

 

 
Fig. 10. F-measure for the five activities of the model trained for each window size. 

 
Additionally, there was a significant difference between 100 and 200 samples and between 100 and 

300 samples for “go downstairs.” These results showed that a window size of 300 was optimal for 
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recognizing the five ADLs. The larger window size was more accurate for “stand to sit/sit to stand” 
and “go downstairs” because the activity time per step was longer than 200 samples, and the activity 
features did not fit within the window. The average F-measure of the five ADLs with a window size 
of 300 samples was 0.912. This result indicates that proposed model was possible to recognize multiple 
activities continuously with higher accuracy than previous study [15]. 

Figure 11 shows the average recognition accuracy of the subject’s obtained for each IMU 
combination pattern. The results showed that there was no significant difference in the recognition 
accuracy by IMU combination patterns, indicating that a single IMU was sufficient to recognize 
activities compared with two IMUs. There was no significant difference for IMU combination pattern 
because the acceleration and angular velocity of each axis of Sensor_1 and Sensor_2 were correlated, 
and there was no difference in the obtained feature values. 
 

 
Fig. 11. Average recognition accuracy of the subject’s obtained for each IMU combination 
pattern (*significant difference: p < 0.05). 

 
Table 3. Physical activity estimation error for each of the five ADLs and the average of the 
five ADLs when the IMU combination pattern is Sensor_1 or Sensor_2 with a window size of 
300 samples. 

 
Based on the results of the window size and IMU combination patterns, Table 3 shows the physical 

activity estimation error for each of the five ADLs and the average of the physical activity estimation 
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error for each sensor of the five ADLs when the window size is 300 samples. The true physical activity 
was calculated from the true activity label. The physical activity estimation error of eight commercially 
available activity meters, such as BodyMedia FIT and ActiGraph, is 9.30% [29]. In contrast, the 
proposed cane measurement device can estimate the physical activity with an error of 7.37%. Our cane 
measurement device could be used to monitor the physical activity of the elderly using a cane. 

Figure 12 shows the confusion matrix of the subject with the largest physical activity estimation 
error. This figure shows that the activity recognition model incorrectly predicts “stand upright” as “go 
upstairs.” Therefore, the activity of “go upstairs” was 18.2% smaller than the true value, and that of 
“stand upright” was 38.2% larger than the true value. Figure 13 shows acceleration and angular 
velocity in the three axes obtained from the IMU of the stand upright label of the subject with the 
largest physical activity estimation error. As shown in Figure 13, the cause of misrecognition was the 
cane vibrating in the z- and x-axes directions when it changed from a “go upstairs” motion to a “stand 
upright” motion. For the coordinates of the IMU, leftward means positive on the x-axis, upward means 
positive on the y-axis, and direction of travel means positive on the z-axis. This waveform was 
probably obtained because the body swayed back and forth due to an unstable center of gravity during 
the change to “stand upright.” Therefore, a filter that can suppress the minute acceleration and angular 
velocities caused by body wobble could be used to solve this problem. 
 

 
 

Fig. 12. Confusion matrix of subject with the largest physical activity estimation error. 
 

  
   (a) Acceleration                                 (b) Angular velocity  

                  
Fig. 13. Acceleration and angular velocity from the IMU of the stand upright label. 

Sample 



Journal of Mechanical and Electrical Intelligent System (JMEIS) 

42 
J. Mech. Elect. Intel. Syst., Vol.6, No.1, 2023 

The experimental results show that the proposed system solves the problem of the cane 
measurement device in the previous study and can estimate the physical activity of the elderly with 
higher accuracy than existing activity meters. The issues of the previous research on the cane 
measurement device were solved by creating a dataset using the Elderly Experience Kit and activity 
recognition model based on deep learning. However, this study has potential limitations. In reality, the 
elderly might perform a movement, such as holding onto a handrail and walking upstairs and 
downstairs, without swinging the cane. This exceptional cane movement makes it difficult to recognize 
the activity. Since this system could not recognize such exceptional movements, it is necessary to 
obtain data that more accurately resemble the movements of the elderly. Thus, we propose developing 
a system that can accurately estimate physical activity, even when elderly-specific movements are 
included. 

4. Conclusion 
In this study, we proposed a method for estimating physical activity with high accuracy by solving 

the issues of the dataset and activity recognition model of the IMU-based cane measurement device in 
the previous study[15]. In the experiment, we compared the window size of the IMU data input to the 
deep learning model and the IMU combination patterns. We also evaluated the physical activity 
estimation error based on the results of the window size and IMU combination patterns. The results 
showed that the optimal window size of the proposed system was 300 samples, and no significant 
difference was observed in the IMU combination pattern. Furthermore, the physical activity estimation 
error of the cane measurement device was 7.37%, rendering it more accurate than existing activity 
meters. These results showed that physical activity could be monitored by attaching a single IMU to a 
cane used by the elderly daily. 
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