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Abstract. Analytical results are presented on bifurcation and modal coupling in nonlinear vibrations 
of symmetrical and asymmetrical perforated beams in which both ends are clamped and subjected to 
lateral periodic force. In the analysis, the beam is divided into three segments, where the middle 
segment with a hole is modeled as a variable cross-section. The deflection of the beam is expanded 
with the mode shape function that is expressed with the product of truncated power series and 
trigonometric functions. Applying the Galerkin procedure, the nonlinear governing equation of the 
beam is reduced to a set of simultaneous nonlinear ordinary differential equation of motion in a 
multiple-degree-of-freedom system, by which nonlinear responses are obtained. The principal 
resonance of the lowest mode of the symmetrical beam is accompanied by the pitchfork bifurcation 
due to the sudden occurrence of super-harmonic resonance of the order-two of the 2nd mode. In contrast, 
the principal resonance of the lowest mode of the asymmetrical beam is accompanied by the saddle-
node bifurcation, which is perturbed from the pitchfork bifurcation, because of the loss of symmetry 
of the beam. Furthermore, as the asymmetricity of the beam increases, the bifurcation occurs at the 
lower frequency.  

1. Introduction 

In recent years, structure of mechanical or electronic devices have been more compact than before, 
and it is composed of a large number of thin elastic structural elements. Those elements have complex 
shapes and discontinuous cross-sections. When the thin beams are subjected to an external periodic 
excitation, large-amplitude resonance and nonlinear responses are easily generated. At the same time, 
due to the change in one of the system parameters, the modal coupling phenomenon may appear, 
accompanied by bifurcation, which will eventually cause a qualitative change in the dynamics of the 
entire system.  

The subject of non-linear vibrations of structures has received much attention, at the same time, the 
internal resonance and bifurcation phenomena of structures during nonlinear vibration have also been 
extensively studied by researchers. C. H. Riedel and C. A. Tan [1] studied the coupled and forced 
responses of an axially moving strip with internal resonance. They found that the response of the 
vibration system has a 3 to 1 internal resonance between the first two transverse modes. C.M. Chin 
and A.H. Nayfeh [2] investigated internal resonance in hinged–clamped beams subject to a primary 
excitation in either its first or its second mode. They showed that the frequency of the second mode is 
approximately three times that of the first mode and hence a three-to-one internal resonance can be 
activated. X. Y. Mao et al. [3] analyzed the primary and the secondary resonance of a super-critically 
axially moving beam subjected to 3:1 internal resonance, the first-two modes are found to be coupled  
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Nomenclature [ ]nu  Axial displacement at the right-
hand-side of the n-th segment 

Symbols enw  Unknown time functions at nodes 
L Beam length niZ  Mode shape functions 
b Beam width  enw  A vector consists of enw  

( , )U x t  Axial displacement  { }nZ  A vector consists of niZ  and its 
1st-, 2nd-, and 3rd-order derivatives 

( , )W x t  Deflection niZ  A component of { }nZ  
sP  Magnitude of static acceleration , ( , )i f k l  Kronecker-delta  
dP  Amplitude of periodic acceleration [ ]nZ  A matrix about niZ  

t  Time [ ]nD  A matrix consists of parameters of 
the n-th segment 

nA   Cross-sectional area ˆ{ }b  
Global nodal vector includes the 
nodal vectors  enw  of the all 
segments 

n  Density ˆ{ }d  Vector consists of axial 
displacement [ ]nu  of all nodes 

nE  Young's modulus   
nI  Moment of inertia of cross section { }b  Static deflection 

Non-dimensional Symbols { }b  Dynamic deflection 

l  Distance from the hole to the center 
of the beam j  Linear natural modes of vibration 

n  Local non-dimensional coordinate 1 , 2 , 3  First three natural frequencies 
  Excitation frequency rmsw  RMS value of deflection 

  Time 2rmsb  RMS value of deflection of the 2nd 

mode 

sp  Magnitude of static acceleration b1, b2 Normal coordinate of the lowest 
and 2nd mode 

dp  Amplitude of periodic acceleration A1, A2 Fourier amplitudes of the lowest 
and 2nd mode 

nw  Deflection bf  Excitation frequency of bifurcation 
xnn  Axial force Abbreviations 
xns  Slope  PF Pitchfork bifurcation 
xnm  Bending moment  SN Saddle-node bifurcation 

xnq  Shearing force RMS Root mean square value 
 
by the internal resonance. J. L. Huang et al. [4] investigated the transverse nonlinear steady-state 
vibrations of the axially moving beam, in which they found that the beam has a three-to-one internal 
resonance between the first two modes, when it is subjected to a harmonic excitation. W.Y. Tseng and 
J. Dugundji [5] investigated nonlinear vibrations accompanied with snap-through of a buckled beam 
with fixed ends, in which principal-harmonic and super-harmonic resonances of the beam are obtained 
by analytically and experimentally. The critical and post-critical behavior of a non-conservative non-
linear damped planar beam, undergoing statical and dynamical bifurcations, is analyzed by A. Di 
Egidio et al. [6]. According to a research of H. Akhavan, B. S. et al [7], the phenomenon of internal 
resonance due to modal coupling is studied in the non-linear piezoelectric small-scale beam and 
secondary branches due to bifurcations are found by using the shooting method. M. H. Ghayesh and 
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M. Amabili [8] investigated nonlinear dynamics of an axially moving Timoshenko beam, the system 
with a three-to-one internal resonance between the first two modes is found by Galerkin method 
employing 20 degrees of freedom. In the article by G. X. Wang et al. [9], they investigated nonlinear 
free vibration and 3:1 internal resonance of a hanging cantilever beam. Moreover, the results of an 
experimental investigation of non-linear one-to-one modal coupling in the dynamic response of 
cantilever beams excited by a periodic transverse base excitation are presented by C. L. Zaretzky and 
M. R. M. C. Da Silva [10]. K. Nagai and S. Maruyama et al. [11-12] investigated nonlinear vibrations 
of a post-buckled beam with an axial elastic constraint by experiment and numerical analysis, they 
confirmed the bifurcation behavior from the sub-harmonic responses of 1/3 order and of 1/2 order to 
the chaotic responses, and the final analytical results agreed well with experimental results. S. 
Maruyama and M. Hachisu et al. [13] investigated nonlinear vibrations of a post-buckled beam with a 
stepped section. The stepped beam is divided into a few number of segments and nonlinear and chaotic 
vibrations are numerically solved taking deflections, slope, bending moments, and shearing force as 
unknown time functions. The numerical results are also confirmed by experiments. S. Maruyama, T. 
Yamaguchi et al. [14] investigated chaotic vibrations due to internal resonance of 2nd and 3rd modes of 
an arch by experiment. F. Fontanela et al. [15] confirmed the two coupled beams with piecewise linear 
stiffness show bifurcations to localized solutions. In [16], bifurcation analysis is conducted for 
nonlinear vibrations of a composite cantilever beam under active control. 

When large amplitude vibration response is induced in a thin beam, modal coupling between 
symmetrical and asymmetrical modes might appear accompanied by bifurcation. The modal coupling 
and bifurcation phenomena are sensitive to the asymmetricity of the beam, but those phenomena have 
not been clearly explained. Therefore, this paper presents numerical results on modal couplings in 
nonlinear vibrations of symmetrical or asymmetrical perforated beams. With increasing the 
asymmetricity of the perforated beam, change of the bifurcation is discussed in detail, where the 
asymmetric mode appears in the principal resonance of the lowest mode. 

2. Procedure of Analysis 

As shown in Fig. 1, a beam of which length L is clamped at the both ends. The x- and z-axes are 
introduced in the axial and lateral directions of the beam, respectively. The symbols ( , )U x t  and 

( , )W x t  denote axial displacement and deflection, respectively. The beam is subjected to the static and 
periodic acceleration coss dP P t  . The four types of perforated beam are considered in this paper, 
which are shown in Fig. 2. The beams have a circular hole with the diameter half of the beam width b. 
The Model 1 is symmetric, i.e., the circular hole is located at the center of the beam. In contrast, the 
Models 2, 3, and 4 are asymmetric, i.e., the center of circular hole is located 0.02l L  , 0.06L , and
0.12L , respectively, apart from the center of the beam.  

 

 
 

Fig. 1. Analytical model. 
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Fig. 2. Four models of beam. 
 
 

 
Fig. 3. Local coordinate system. 

 
In the analysis, the beam is divided into three segments, two of which correspond to the parts with 

original rectangular cross section, while the other is the part with a hole in the range 
2 2 2 2L b x L b     for the Model 1 and 2 2 2 2L b l x L b l       for the Models 2, 3, and 4. 

The local non-dimensional coordinate n  is introduced for the n-th segment ( 1 2 1 2n   ) as shown 
in Fig. 3. The symbols nA , n , nE  and nI  in Fig. 3 denote the cross-sectional area, density, Young's 
modulus and the cross-sectional moment of the n-th segment, respectively. 

For sufficiently thin beams, the axial inertia, rotational inertia and shearing deformation can be 
neglected. Based on the Hamilton’s principle, non-dimensional governing equation of motion is 
derived as shown in Eq. (1), in which the non-dimensional deflection, axial force, slope, bending 
moment, and shearing force are denoted as nw , xnn ， xns , xnm  and xnq , respectively. The symbol [ ]nu  
is axial displacement at the right-hand-side of each segment.  Symbols sp  and dp  of Eq. (1) are 
the non-dimensional quantities of static and periodic acceleration, respectively. Symbols   and   
are non-dimensional excitation frequency and time, respectively.  
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The deflection nw  of each segment is expressed with the linear combination of coordinate function 

n , by taking the nodal variables enw  as unknown time functions as shown in Eq. (2). The coordinate 
function n  is defined by the linear combination of the mode shape functions niZ  those are product 
of the truncated power series up to the 3rd-order and the trigonometric function. The coefficients of 
linear combination is appropriately chosen so that the nw  and its derivative up to the 3rd order at the 
both ends of segment are identical to the corresponding component of  enw . The vector  enw  
consists of the nodal variables nw , xns , xnm  and xnq  at both ends of the beam segment. { }nZ  is a 
vector consists of the mode shape functions, niZ  is a component of { }nZ , the subscript i indicates the 
number of rows of { }nZ , and , ( , )i f k l  is the Kronecker-delta. [ ]nZ  is an 8×8 matrix consists of niZ  
and its 1st-, 2nd-, and 3rd-order derivatives, [ ]nD  is an 8×8 matrix consists of parameters of the n-th 
segment. Introducing the global nodal vector ˆ{ }b  which includes the nodal vectors  enw  of the all 
segments, and the vector ˆ{ }d  which consists of axial displacement [ ]nu  of all nodes, and applying 
the Galerkin procedure, the nonlinear governing equation of the beam is reduced to a set of ordinary 
differential equations as follows. 
 

 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆˆ ˆ ˆ ˆ ˆ, cos 0pq q pq q pqv q v pvq v q pqrs q r s p p s d
q q q v v q q r s

B b C b D b d D d b E b b b F G p p              (3) 

ˆ ˆ ˆˆ ˆ ˆ 0 , , , 1, 2 , , 4( 1), , 4( 1) 1, 4( 1) 2, ,5( 1)tv v trs r s t
v r s

C d D b b F p q r s N t v N N N               (4) 

 
Based on Eq. (4) , the axial displacement of each node ˆ{ }d  can be expressed as the functions of 

ˆ{ }b , and then substituting it into Eq. (3), the equation of motion can be expressed only by unknowns 
ˆ{ }b . The node vector ˆ{ }b  is separated into { }b  of the static deflection and the dynamic deflection 

{ }b . By ignoring the time-varying term, the static deflection { }b  caused by the static lateral 
acceleration and the initial axial displacement is obtained. Next, the ordinary differential equation is 
converted into the equation of the dynamic variable { }b  measured from the static equilibrium position. 
Furthermore, the ordinary differential equations are transformed to the standard form in terms of 
normal coordinates ib  corresponding to the linear natural modes of vibration j  at the static 
equilibrium position of the beam. Dynamic responses can be calculated with the harmonic balance 
method and the Runge-Kutta-Gill numerical integration method. 

3. Results and Discussion 

In the following results, frequency response and time histories are obtained numerically for model 
1~4 under the static acceleration 271sp   and amplitude of periodic acceleration 3000dp  . The 
responses of deflection are measured at 0.25  . 

 



Journal of Mechanical and Electrical Intelligent System (JMEIS) 

6 
J. Mech. Elect. Intel. Syst., Vol.6, No.1, 2023 

3.1 Symmetric beam 

Figure 4 shows the analytical results of frequency response curve of Model 1. In the frequency 
response curve, the black and gray curves show the stable and unstable periodic responses, respectively, 
calculated by the harmonic balance method. The red and blue curves represent the forward sweeping 
solution and the downward sweeping solution which are calculated by Runge-Kutta-Gill method, 
respectively. The symbols 1 , 2 , and 3  in the figures represent the first three natural frequencies 
of each model, respectively. Moreover, symbols (1:1) and (3:1) represent the principal resonance of 
the lowest mode and 3rd mode, respectively. The (1:2) and (1:3) respectively represent the super-
harmonic resonances of order 2 and 3 of the lowest mode, while (1:1/2) and (1:1/3) represent sub-
harmonic resonance of order 1/2 and 1/3 of the lowest mode.  

The principal resonance of the lowest mode (1:1), the sub-harmonic resonance of order 1/2 of the 
lowest mode (1:1/2), and the principal resonance of the 3rd mode (3:1) of Model 1 in Fig. 4 show 
frequency response curve corresponding to almost hardening restoring force characteristics. 

  

 
 

Fig. 4. Frequency response curve (Model 1). 
 

 
 

Fig. 5. Partial magnification of frequency response curve (Model 1). 
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Figure 5 shows partial magnification of the black circular part of frequency response curve in Fig. 
4. It can be seen that the branch of periodic response (1,1) bifurcates to three branches at excitation 
frequency 42.11  , and the result of direct numerical integration follows one of the stable branches. 
It also can be confirmed that there is a pitchfork (PF) bifurcation in the figure. 

Figure 6 shows the frequency response curve of normal coordinate b2 of 2nd mode. Figure 7 is the 
enlarged figure of the black circle in Fig. 6 around the bifurcation point. In the frequency band 
( 42 100  ) corresponding to the large amplitude part of the (1:1) resonance response, the amplitude 
of the 2nd mode increases sharply after the bifurcation, while the amplitude of b2rms of the 2nd mode is 
zero before the bifurcation. 

 

 
 

Fig. 6. Frequency response curve of 2nd mode (Model 1). 
 

 
 

Fig. 7. Partial magnification of frequency response of 2nd mode (Model 1). 
 
Figure 8 represents the time histories of normal coordinates b1 and b2 of the lowest mode and 2nd 

mode, respectively. Figs. 8 (a) and (b) are the time histories before and after the PF bifurcation, their 
corresponding excitation frequencies are 40   and 50  , respectively. According to the Figs. 8 
(a) and (b), the peak value of b1 is much larger than that of b2 before the PF bifurcation at 40  . 
However, compared to before the PF bifurcation at 40  , although the peak value of b1 is hardly 
changed after the PF bifurcation at 50  , the peak value of b2 is increased largely.  
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Through the FFT analysis of the time histories of Model 1 before and after the PF bifurcation, the 
Fourier spectra of Model 1 can be obtained in Figs. 9 (a) and (b), respectively. The symbols A1 and A2 
represent the Fourier spectra amplitudes of the lowest mode and 2nd mode, respectively. In Fig.9 (a), 
before the PF bifurcation, the curves of A1 and A2 have the largest peak value at the excitation frequency

40  , i.e., principal resonance component of the lowest mode has a great contribution to the response 
at 40  . However, according to the curves A1 and A2 of Fig. 9 (b), after the PF bifurcation at excitation 
frequency 50  , the peak value of A1 still appears at excitation frequency 50  , but the peak value 
of A2 appears at twice of the excitation frequency 2  ( 2 100  ), i.e., not only the principal resonance 
component of the lowest mode at 50  , the twice harmonic component of the 2nd mode at 2 100   
also has a great contribution to the vibration response. It can be confirmed that the 2nd mode is 
generated with super-harmonic resonance after the PF bifurcation. Therefore, this bifurcation is due to 
the two to one internal resonance caused by the modal coupling between the lowest and the 2nd modes 
of vibration. 

 

  
(a) before the bifurcation ( 40  ) (b) after the bifurcation ( 50  ) 

 
Fig. 8. Time histories (b1 and b2 of Model 1). 

 

  
(a) before the bifurcation ( 40  ) (b) after the bifurcation ( 50  ) 

 
Fig. 9. Fourier spectra (A1 and A2 of Model 1). 

3.2 Asymmetric beam  

Through analyzing the numerical calculation results of Model 2, the frequency response curves are 
obtained in Fig. 10. According to Fig. 10, the principal resonance of the lowest mode (1:1), the sub-
harmonic resonance of order 1/2 of the lowest mode (1:1/2), and the principal resonance of the 3rd 
mode (3:1) of Model 2 show almost hardening restoring force characteristics. In addition, different 
with Model 1, the principal resonance of the 2nd mode (2:1) of Model 2 appears, indicating that the 
asymmetrical position of the hole enables the 2nd mode resonance to appear, and it also shows almost 
hardening restoring force characteristics. Moreover, Figure 11 shows partial magnification of the black 
circular part of frequency response curve in Fig. 10. It can be seen that a saddle-node (SN) bifurcation 
occurs at excitation frequency 42.08   in Fig. 11. Next, Figure 12 shows frequency response curve 
of normal coordinate b2 of 2nd mode, while Fig. 13 shows the enlarged the black circle of Fig. 12 
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around the bifurcation point. Because of the asymmetrical position of the hole, the 2nd mode is 
continuously induced even before the bifurcation, and the PF bifurcation is perturbed to become the 
SN bifurcation. 

 

 
 

Fig. 10. Frequency response curve (Model 2). 
 

 
 

Fig. 11. Partial magnification of frequency response curve (Model 2). 
 

 
 

Fig. 12. Frequency response curve of 2nd mode (Model 2). 
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Fig. 13. Partial magnification of frequency response of 2nd mode (Model 2). 
 

The time histories and Fourier spectra of Model 2 are compared with those of Model 1, respectively, 
where Figs. 14 (a) and (b) represent the time histories of b1 and of b2 of Model 2 before and after the 
PF bifurcation, respectively. Figs. 15 (a) and (b) represent Fourier spectra of b1 and b2 of Model 2 
before and after the PF bifurcation, respectively. 

 

  
(a) before the bifurcation ( 40  ) (b) after the bifurcation ( 50  ) 

 

Fig. 14. Time histories (b1 and b2 of Model 2). 
 

  
(a) before the bifurcation ( 40  ) (b) after the bifurcation ( 50  ) 

 

Fig. 15. Fourier spectra (A1 and A2 of Model 2). 
 
Firstly, according to Fig. 8 (a), time history of b2 of Model 1 hardly changes with time, i.e., the 
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asymmetric beam, it will be slightly induced before the bifurcation of the 2nd mode. Moreover, 
according to the curve A2 of Fig.15 (b), after the bifurcation, it also can be confirmed that the peak of 
b2 appears at excitation frequency ( 2 100  ), i.e., when the model is asymmetric, the twice harmonic 
component of the 2nd mode at 2 100   also have a great contribution to the vibration response. 

 

 
 

Fig. 16. Comparison of frequency response curves of 2nd mode for four models. 
 
In order to further investigate the influence of asymmetricity on the bifurcation of the beam, i.e., the 

effect of l  on the bifurcation, the results of Model 3 and 4 are obtained by numerical calculation. 
The frequency response curves of Model 1~4 are compared in Fig. 16, in which the bf  represents 
the value of the excitation frequency when the bifurcation occurs. 

According to Fig. 16, for Models 1~4, due to the increase in l , the amplitude of b2rms for 
corresponding model is increasing and the locations of bifurcations are shifted towards the lower 
frequency. It is considered that the asymmetry of the model increases, i.e., the value of l  is increased, 
internal resonance due to mode coupling between the lowest mode and the 2nd mode is more likely to 
occur. Hence, the 2nd mode is generated with super-harmonic resonance earlier, the bifurcation occurs 
at the lower frequency. 

4. Conclusions 
Through the above analyses, the following conclusions are obtained: 
(1) When the hole is at the center of the beam, the branch of periodic response the principal 

resonance of the lowest mode bifurcates to three branches of which two stable responses are 
accompanied by super-harmonic resonance of order-two of the 2nd mode. Due to modal coupling with 
super-harmonic resonance of order-two of the 2nd mode, the PF bifurcation appears along the principal 
resonance response of the lowest mode.  

(2) When the hole is apart from the center of the beam, the loss of symmetry leads to the appearance 
of the SN bifurcation. The reason is that, because of the asymmetrical position of the hole, the 2nd mode 
is continuously induced before and after bifurcation, which perturbs the PF bifurcation to become the 
SN bifurcation. 

(3) When the asymmetricity of the beam increases by changing the position of the hole from the 
center, the bifurcation occurs at the lower frequency. 
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