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Abstract. This paper presents extended Leslie-Singh architecture of the 1st order ∆ΣAD modulator 
using multi-bit internal ADC and DAC. The original Leslie-Singh architecture ∆Σ AD modulator uses 
a multi-bit ADC and a single-bit DAC inside the modulator. Here we consider an m-bit ADC and an 
n-bit DAC with 𝑚 ≥ 𝑛 ≥ 1 . SQNDR of the modulator for various (𝑚, 𝑛)  is investigated by 
simulations and it is found that as m increases by 1, SQNDR improves by 6dB, while as n increases 
by 1, SQNDR improves by 3dB for 𝑚 ≫ 𝑛 but it saturates for 𝑚 ≈ 𝑛. We have clarified that as the 
DAC resolution increases by 1 bit, the SQNDR improves by 3dB since the input range for the 
modulator stable operation is extended. 

1. Introduction 

A multi-bit ∆Σ AD modulator receives much attention because the quantization noise of the ADC 
inside is reduced. The multi-bit ADC inside the modulator improves the signal-to-[quantization noise 
+ distortion] ratio (SQNDR) by 6 dB for 1-bit resolution increase [1]. In many cases, a 3-bit flash is 
used as a multi-bit ADC because more than 3-bit flash ADC requires large hardware and power. Also, 
the multi-bit DAC improves the high-order modulator loop stability as well as the integrator 
operational amplifier swing inside the modulator is reduced, which is suitable for low power. For a 
continuous-time modulator, the multi-bit DAC clock jitter effects are alleviated. However, the multi-
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bit DAC nonlinearity causes overall ∆Σ ADC nonlinearity and hence some care such as employment 
of data-weighted-averaging (DWA) logic is needed [1]. 

Then the Leslie-Singh or Yoshitome-Uchimura ∆ Σ AD modulator architecture was proposed in [2, 
3], where a multi-bit ADC and a single-bit DAC are used inside the modulator. It keeps the advantage 
of quantization noise reduction thanks to the internal multi-bit ADC, while the DAC nonlinearity 
problem is avoided because the single-bit DAC is inherently linear. However, it loses the multi-bit 
DAC advantages of higher-order loop stability and the operational amplifier swing reduction. This 
architecture has been used in many applications [4-10]. 

 We proposed a charge-domain CMOS folding ADC which is fast comparable to the flash-type and 
it requires only m comparators for m-bit resolution [4]. A 5-bit or 6-bit charge domain CMOS folding 
ADC can be used inside the ∆Σ AD modulator in practice, thanks to its low power and small hardware. 
Then we consider the generalization of the Leslie-Singh ∆Σ AD modulator architecture where an m-
bit ADC and an n-bit DAC with m ≥  n ≥ 1 are used. Notice that the original Leslie-Singh 
architecture uses a 1-bit DAC whereas our extension uses an n-bit DAC (n ≥ 1). m can be as large as 
6 and in such a case, n is not necessarily equal to m for hardware and power reduction; in other words, 
if a flash-type ADC is employed inside the modulator, its resolution is limited up-to 3 or 4-bit due to 
the power and hardware restriction, but when the charge domain folding ADC is used, its resolution is 
extended up-to 5 or 6-bit, which motivates the present study. There are some cases that even if a 6-bit 
internal charge domain folding ADC is used, a 3 or 4-bit internal DAC is preferable, such as 
continuous-time delta-sigma modulator case where a 3 or 4-bit internal DAC can reduce the sampling 
clock jitter effects with reasonable amount of circuits; there our generalized Leslie-Singh architecture 
is effectively applicable. 

We show here as an extension of our previous conference paper [5] that as the resolution (m-bit) of 
the multi-bit ADC in the extended Leslie-Singh AD modulator architecture increases by 1 bit, which 
is reasonable. Also, we show in simulation that as the resolution (n-bit) of the multi-bit DAC increases 
by 1 bit, its SQNDR increases by 3 dB, and that its reason is the extension of the stable operation input 
range by the DAC resolution increase. 

In this paper, Section 1 describes the introduction of multi-bit ∆Σ AD modulator. Section 2 presents 
the Leslie-Singh architecture of the 1st order ∆Σ AD modulator, and Section 3 shows its simulation 
results. Finally, Section 4 provides the conclusion. 

2. Extended Leslie-Singh Architecture of 1st order ∆ΣAD Modulator 
  Leslie and Singh proposed a ∆ΣAD modulator which uses a multi-bit ADC and a single bit DAC. It 
can reduce the quantization noise of the ADC inside the modulator and avoid nonlinearity of the DAC; 
this is because the single-bit DAC is inherently linear whereas the multi-bit DAC has some 
nonlinearities. We have mentioned a ∆ΣAD modulator which uses a 6-bit or 5-bit folding ADC and a 
3-bit DAC with the data-weight-averaging (DWA) algorithm logic, as the extension of the Leslie-
Singh architecture and as well as an application of the charge domain folding ADC [4]. 

We investigate here our extended Leslie-Singh architecture of 1st order ∆ΣAD modulator (Fig.1). It 
is composed of an analog integrator, a comparator (𝑚-bit ADC) and an 𝑛-bit DAC (m ≥ n ≥ 1). The 
modulator output is expressed as follow: 
                    𝑌(𝑍) = 𝑉 (𝑍) + 𝑄(𝑍)                            = 1(1 − 𝑍 ) 𝑋(𝑍) − 𝑍 𝑌(𝑍) − 𝑇(𝑍) + 𝑄(𝑍)         = 𝑋(𝑍) + 𝑍  𝑇(𝑍) + (1 − 𝑍 )𝑄(𝑍)                         (1) 
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Fig. 1. Extended Leslie-Singh architecture of 1st order ∆ΣAD modulator. 
 
Here, 𝑋(𝑍) is the input signal, 𝑌(𝑍) is the 𝑚-bit ADC output, 𝑄(𝑍) is the ADC quantization 

noise, 𝑆(𝑍) is the modulator output, 𝐻(𝑍) is the analog integrator transfer function and 𝑇(𝑍) is the 
lower (𝑚 − 𝑛) bits of 𝑛-bit DAC. Here, the DAC input R(Z) is the upper n bits of Y (Z) and the 
truncation signal 𝑇(𝑍) is expressed as the following: 
 𝑇(𝑍) = 𝑌(𝑍) − 𝑅(𝑍)                                                                  (2) 
 
Then, the final output of the modulator S(Z) can be expressed as: 

 𝑆(𝑍) = 𝑌(𝑍) − 𝑍 𝑇(𝑍)                                                               (3) 
 

Substituting Eq. (1) into Eq. (3), the modulator output S(Z) can be written as: 
 𝑆(𝑍) = 𝑋(𝑍) + (1 − 𝑍 )𝑄(𝑍)                                                       (4) 
 
Here, we see that the signal transfer function is 1 (𝑆𝑇𝐹(𝑍) = 1), while the noise transfer function 

shows that the quantization noise is the first-order noise shaped (𝑁𝑇𝐹(𝑍) = 1 − 𝑍 ). 

3. Simulation Results 

The extended Leslie-Singh architecture of 1st order ∆ΣAD modulator in Fig.1 is simulated using 
MATLAB with simulation parameters in Table 1. 

The simulation results of the over sampling ratio (OSR) versus SQNDR for the modulator with a 
multi-bit ADC and a single-bit DAC are shown in Fig. 2. Here, OSR and SQNDR are evaluated by the 
following equations: 

 𝑂𝑆𝑅 = 𝑓2 ∙ 𝐵                                                                            (5) 
 𝑆𝑄𝑁𝐷𝑅 = 10 𝑙𝑜𝑔( 𝑆𝑖𝑔𝑛𝑎𝑙 𝑝𝑜𝑤𝑒𝑟𝛴(𝑁𝑜𝑖𝑠𝑒 + 𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛) 𝑝𝑜𝑤𝑒𝑟)                                 (6) 
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Table 1. Simulation parameters. 
 

ADC 
m [bit] 

DAC 
n [bit] 

Input Signal 
 

Amplitude 
@max value 

Input freq. 
Sampling freq. 

Data points 
 

1 1  
 
 
 
 
 
 
 
 

Sine wave 

0.9  
 
 
 
 
 
 
 
 

1/2  

 
 
 
 
 
 
 
 
 2  

2 1 1.9 
2 2 2.9 
3 1 3.9 
3 2 5.9 
3 3 6.9 
4 1 7.9 
4 2 11.9 
4 3 13.9 
4 4 14.8 
5 1 15.9 
5 2 23.7 
5 3 27.8 
5 4 29.7 
6 1 31.9 
6 2 47.5 
6 3 55.7 
6 4 59.6 
6 5 61.9 

 
The simulation results show that a multi-bit ADC improves the linearity and the quantization noise 

is reduced. We see in Fig 2 that a 6-bit ADC inside the modulator has the best linearity and the 
corresponding AD modulator achieves the high SQNDR. 

Fig. 3 shows the results of SQNDR at OSR = 2  of the original Leslie-Singh 1st order ∆ΣAD 
modulator with a multi-bit ADC and a single-bit DAC. We discovered that for 1-bit to 2-bit ADC the 
SQNDR increases by 3 [dB], whereas for 2-bit ADC to 6-bit ADC, SQNDR increase by 6 [dB] for 
every ADC resolution increase by 1-bit. This result is supported by the following equation: 

 𝑆𝑄𝑁𝐷𝑅 = 6.02𝑚 + 1.76 𝑑𝐵                                                          (7) 
 

 
 

Fig. 2. OSR versus SQNDR of the 1st-order Leslie-Singh modulator with various resolutions 
of the multi-bit ADC. 
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Fig. 3. SQNDR versus multi-bit ADC resolution at OSR = 2  of the 1st order Leslie-Singh 
modulator. 
 

 
 
Fig. 4. SQNDR at OSR = 2  in case of multi-bit ADC and DAC usage inside the modulator. 
 
The simulation results of SQNDR at OSR = 2  using a multi-bit DAC are shown in Fig. 4. The 

results in Fig. 4 show that from 1-bit DAC to 3-bit DAC, as every 1 bit increases, SQNDR is increased 
by 3 dB. However, more than 3-bit DAC may lead to large hardware and power with only small 
SQNDR improvement, and the 3-bit DAC may suffice in 6-bit ADC usage case.  

We have investigated the reason why SQNDR increases by 3 dB for the DAC resolution increase 
by 1 bit. As Fig. 5 shows, the input amplitude for the stable operation is extended for the DAC 
resolution increase; the multi-bit internal DAC improves the modulator stability and hence the input 
range for the stable operation is widened [1]. Also the summarized simulation results of SQNDR at OSR = 2  which uses (𝑚, 𝑛) bits inside the modulator are shown in Table 2. 
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    (a) In case of a 3-bit ADC inside the modulator                (b) In case of a 4-bit ADC 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
            (c) In case of a 5-bit ADC                       (d) In case of a 6-bit ADC 
 
Fig. 5. SQNDR at OSR = 2  in case of a 1-bit, 2-bit or 3-bit DAC usage inside the modulator. (a) In 
case of a 3-bit ADC inside the modulator. (b) In case of a 4-bit ADC. (c) In case of a 5-bit ADC. (d) 
In case of a 6-bit ADC. 
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Table 2. Summarized of the simulation results. 
 

ADC 
m [bit] 

DAC 
n [bit] 

Input Signal 
 

Amplitude 
@max value 

Input freq. 
Sampling freq. 

Data 
points 

SQNDR [dB] 
@OSR = 2  

1 1  
 
 
 
 
 
 
 
 

Sine wave 

0.9  
 
 
 
 
 
 
 
 

1/2  

 
 
 
 
 
 
 
 
 2  

47.29 
2 1 1.9 50.40 
2 2 2.9 53.30 
3 1 3.9 55.40 
3 2 5.9 59.03 
3 3 6.9 61.30 
4 1 7.9 60.50 
4 2 11.9 63.45 
4 3 13.9 65.75 
4 4 14.8 67.45 
5 1 15.9 66.47 
5 2 23.7 69.33 
5 3 27.8 71.48 
5 4 29.7 72.17 
6 1 31.9 72.26 
6 2 47.5 75.15 
6 3 55.7 76.97 
6 4 59.6 77.84 
6 5 61.9 78.20 

4. Conclusion 
The extended Leslie-Singh architecture of 1st order ∆ΣAD modulator using multi-bit DAC has been 

investigated. Its SQNDR is analyzed and compared for various combinations of the internal ADC and 
DAC resolutions. The simulation results show that for 1-bit resolution increase of the multi-bit ADC, 
its SQNDR is increased by 6 dB. Also, we found that for 1-bit resolution increase of the multi-bit 
internal DAC from 1-bit to 3-bit, the SQNDR is increased by 3 dB, whereas for more than 4-bit, it 
saturates. Notice that the multi-bit DAC improves the modulator loop stability and the reason why the 
DAC resolution increase from 1-bit to 3-bit leads to SQNDR improvement is the maximum input 
amplitude increase with keeping stability. 
 Based on the study here, we consider for the multi-bit 1st-order ∆ΣAD modulator design as follows: 
Due to the recent advancement of ADC circuit and architecture as well as LSI device and process 
technologies, a fast and low-power ADC can be realized, and hence the multi-bit ∆ΣAD modulator 
with an internal ADC of 4-bit, 5-bit or 6-bit resolution can be practical; there, a 3-bit DAC inside the 
AD modulator would suffice (instead of a 4-bit, 5-bit or 6-bit DAC) in the viewpoint of the SQNDR 
using the extended Leslie-Singh architecture. In other words, usage of a 1-bit or 2-bit internal DAC 
sacrifices the overall ADC SQNDR there. 
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