Extended Leslie-Singh Architecture of 1st order Delta-Sigma AD Modulator with Multi-bit DAC

Lengkhang Nengvang^{1,a}, Shogo Katayama^{1,b}, Jianglin Wei^{2,c}, Lei Sha^{1,d}, Anna Kuwana^{1,e}, Hiroshi Tanimoto^{3,f}, Tatsuji Matsuura^{4,g}, Kazufumi Naganuma^{5,h}, Kiyoshi Sasai^{5,i}, Junichi Saito^{5,j}, Katsuaki Morishita^{5,k}, Haruo Kobayashi^{1,l,*}

¹Division of Electronics and Informatics, Faculty of Science and Technology, Gunma University

1-5-1 Tenjin-cho Kiryu Gunma 376-8515, Japan

²Faculty of Intelligence Manufacturing, Yibin University, Yibin Sichuan, 64400 China

³Department of Electrical and Electronic Engineering, Kitami Institute of Technology,

Kitami, Hokkaido 090-8507, Japan

⁴Department of Electrical Engineering Tokyo University of Science,

Noda Chiba 278-8510, Japan

⁵Alps Alpine Co., Ltd., 3-31 Ake-dori, Izumi-Ku, Sendai, Miyagi 981-3280, Japan

*Corresponding author

^a<t170d515@gunma-u.ac.jp>, ^b<t15304906@gunma-u.ac.jp>, ^c<t171d601@gunma-u.ac.jp>, ^d<shalei201710@gmail.com>, ^e<kuwana.anna@gunma-u.ac.jp>, ^f<htanimot@mail.kitami-it.ac.jp> ^g<matsuura.t@rs.tus.ac.jp>, ^h<kazufumi.naganuma@alpsalpine.com>, ⁱ<kiyoshi.sasai@alpsalpine.com> ^j<junichi.saito@alpsalpine.com>, ^k<katsuaki.morishita@alpsalpine.com>, ^l<koba@gunma-u.ac.jp>

Keywords: ΔΣ ADC, multi-bit, Leslie-Singh architecture

Abstract. This paper presents extended Leslie-Singh architecture of the 1st order $\Delta\Sigma$ AD modulator using multi-bit internal ADC and DAC. The original Leslie-Singh architecture $\Delta\Sigma$ AD modulator uses a multi-bit ADC and a single-bit DAC inside the modulator. Here we consider an *m*-bit ADC and an *n*-bit DAC with $m \ge n \ge 1$. SQNDR of the modulator for various (m, n) is investigated by simulations and it is found that as *m* increases by 1, SQNDR improves by 6dB, while as *n* increases by 1, SQNDR improves by 3dB for $m \gg n$ but it saturates for $m \approx n$. We have clarified that as the DAC resolution increases by 1 bit, the SQNDR improves by 3dB since the input range for the modulator stable operation is extended.

1. Introduction

A multi-bit $\Delta\Sigma$ AD modulator receives much attention because the quantization noise of the ADC inside is reduced. The multi-bit ADC inside the modulator improves the signal-to-[quantization noise + distortion] ratio (SQNDR) by 6 dB for 1-bit resolution increase [1]. In many cases, a 3-bit flash is used as a multi-bit ADC because more than 3-bit flash ADC requires large hardware and power. Also, the multi-bit DAC improves the high-order modulator loop stability as well as the integrator operational amplifier swing inside the modulator is reduced, which is suitable for low power. For a continuous-time modulator, the multi-bit DAC clock jitter effects are alleviated. However, the multi-

bit DAC nonlinearity causes overall $\Delta\Sigma$ ADC nonlinearity and hence some care such as employment of data-weighted-averaging (DWA) logic is needed [1].

Then the Leslie-Singh or Yoshitome-Uchimura $\Delta \Sigma AD$ modulator architecture was proposed in [2, 3], where a multi-bit ADC and a single-bit DAC are used inside the modulator. It keeps the advantage of quantization noise reduction thanks to the internal multi-bit ADC, while the DAC nonlinearity problem is avoided because the single-bit DAC is inherently linear. However, it loses the multi-bit DAC advantages of higher-order loop stability and the operational amplifier swing reduction. This architecture has been used in many applications [4-10].

We proposed a charge-domain CMOS folding ADC which is fast comparable to the flash-type and it requires only *m* comparators for *m*-bit resolution [4]. A 5-bit or 6-bit charge domain CMOS folding ADC can be used inside the $\Delta\Sigma$ AD modulator in practice, thanks to its low power and small hardware. Then we consider the generalization of the Leslie-Singh $\Delta\Sigma$ AD modulator architecture where an *m*bit ADC and an *n*-bit DAC with $m \ge n \ge 1$ are used. Notice that the original Leslie-Singh architecture uses a 1-bit DAC whereas our extension uses an *n*-bit DAC ($n \ge 1$). *m* can be as large as 6 and in such a case, *n* is not necessarily equal to *m* for hardware and power reduction; in other words, if a flash-type ADC is employed inside the modulator, its resolution is limited up-to 3 or 4-bit due to the power and hardware restriction, but when the charge domain folding ADC is used, its resolution is extended up-to 5 or 6-bit, which motivates the present study. There are some cases that even if a 6-bit internal charge domain folding ADC is used, a 3 or 4-bit internal DAC can reduce the sampling clock jitter effects with reasonable amount of circuits; there our generalized Leslie-Singh architecture is effectively applicable.

We show here as an extension of our previous conference paper [5] that as the resolution (m-bit) of the multi-bit ADC in the extended Leslie-Singh AD modulator architecture increases by 1 bit, which is reasonable. Also, we show in simulation that as the resolution (n-bit) of the multi-bit DAC increases by 1 bit, its SQNDR increases by 3 dB, and that its reason is the extension of the stable operation input range by the DAC resolution increase.

In this paper, Section 1 describes the introduction of multi-bit $\Delta\Sigma$ AD modulator. Section 2 presents the Leslie-Singh architecture of the 1st order $\Delta\Sigma$ AD modulator, and Section 3 shows its simulation results. Finally, Section 4 provides the conclusion.

2. Extended Leslie-Singh Architecture of 1^{st} order $\Delta \Sigma AD$ Modulator

Leslie and Singh proposed a $\Delta\Sigma$ AD modulator which uses a multi-bit ADC and a single bit DAC. It can reduce the quantization noise of the ADC inside the modulator and avoid nonlinearity of the DAC; this is because the single-bit DAC is inherently linear whereas the multi-bit DAC has some nonlinearities. We have mentioned a $\Delta\Sigma$ AD modulator which uses a 6-bit or 5-bit folding ADC and a 3-bit DAC with the data-weight-averaging (DWA) algorithm logic, as the extension of the Leslie-Singh architecture and as well as an application of the charge domain folding ADC [4].

We investigate here our extended Leslie-Singh architecture of 1st order $\Delta\Sigma$ AD modulator (Fig.1). It is composed of an analog integrator, a comparator (*m*-bit ADC) and an *n*-bit DAC ($m \ge n \ge 1$). The modulator output is expressed as follow:

$$Y(Z) = V_2(Z) + Q(Z)$$

= $\frac{1}{(1 - Z^{-1})} \{X(Z) - Z^{-1}[Y(Z) - T(Z)]\} + Q(Z)$
= $X(Z) + Z^{-1}T(Z) + (1 - Z^{-1})Q(Z)$ (1)

Fig. 1. Extended Leslie-Singh architecture of 1^{st} order $\Delta\Sigma AD$ modulator.

Here, X(Z) is the input signal, Y(Z) is the *m*-bit ADC output, Q(Z) is the ADC quantization noise, S(Z) is the modulator output, H(Z) is the analog integrator transfer function and T(Z) is the lower (m - n) bits of *n*-bit DAC. Here, the DAC input R(Z) is the upper *n* bits of Y(Z) and the truncation signal T(Z) is expressed as the following:

$$T(Z) = Y(Z) - R(Z)$$
⁽²⁾

Then, the final output of the modulator S(Z) can be expressed as:

$$S(Z) = Y(Z) - Z^{-1}T(Z)$$
(3)

Substituting Eq. (1) into Eq. (3), the modulator output S(Z) can be written as:

$$S(Z) = X(Z) + (1 - Z^{-1})Q(Z)$$
(4)

Here, we see that the signal transfer function is 1 (STF(Z) = 1), while the noise transfer function shows that the quantization noise is the first-order noise shaped ($NTF(Z) = 1 - Z^{-1}$).

3. Simulation Results

The extended Leslie-Singh architecture of 1^{st} order $\Delta\Sigma AD$ modulator in Fig.1 is simulated using MATLAB with simulation parameters in Table 1.

The simulation results of the over sampling ratio (OSR) versus SQNDR for the modulator with a multi-bit ADC and a single-bit DAC are shown in Fig. 2. Here, OSR and SQNDR are evaluated by the following equations:

$$OSR = \frac{f_s}{2 \cdot B} \tag{5}$$

$$SQNDR = 10 \log(\frac{Signal \ power}{\Sigma(Noise + \ distortion) \ power})$$
(6)

ADC	DAC	Input Signal	Amplitude	Input freq.	Data points
<i>m</i> [bit]	<i>n</i> [bit]		@max value	Sampling freq.	
1	1		0.9		
2	1		1.9		
2	2		2.9		
3	1		3.9		
3	2		5.9		
3	3		6.9		
4	1		7.9		
4	2		11.9	4 19 20	c.20
4	3		13.9		
4	4	Sine wave	14.8	1/220	220
5	1		15.9		
5	2		23.7		
5	3		27.8		
5	4		29.7		
6	1		31.9		
6	2		47.5		
6	3		55.7		
6	4		59.6		
6	5		61.9		

Table 1. Simulation parameters.

The simulation results show that a multi-bit ADC improves the linearity and the quantization noise is reduced. We see in Fig 2 that a 6-bit ADC inside the modulator has the best linearity and the corresponding AD modulator achieves the high SQNDR.

Fig. 3 shows the results of SQNDR at $OSR = 2^5$ of the original Leslie-Singh 1st order $\Delta \Sigma AD$ modulator with a multi-bit ADC and a single-bit DAC. We discovered that for 1-bit to 2-bit ADC the SQNDR increases by 3 [dB], whereas for 2-bit ADC to 6-bit ADC, SQNDR increase by 6 [dB] for every ADC resolution increase by 1-bit. This result is supported by the following equation:

$$SQNDR = 6.02m + 1.76 [dB]$$
 (7)

Fig. 2. OSR versus SQNDR of the 1st-order Leslie-Singh modulator with various resolutions of the multi-bit ADC.

Fig. 3. SQNDR versus multi-bit ADC resolution at $OSR = 2^5$ of the 1st order Leslie-Singh modulator.

Fig. 4. SQNDR at $OSR = 2^5$ in case of multi-bit ADC and DAC usage inside the modulator.

The simulation results of SQNDR at $OSR = 2^5$ using a multi-bit DAC are shown in Fig. 4. The results in Fig. 4 show that from 1-bit DAC to 3-bit DAC, as every 1 bit increases, SQNDR is increased by 3 dB. However, more than 3-bit DAC may lead to large hardware and power with only small SQNDR improvement, and the 3-bit DAC may suffice in 6-bit ADC usage case.

We have investigated the reason why SQNDR increases by 3 dB for the DAC resolution increase by 1 bit. As Fig. 5 shows, the input amplitude for the stable operation is extended for the DAC resolution increase; the multi-bit internal DAC improves the modulator stability and hence the input range for the stable operation is widened [1]. Also the summarized simulation results of SQNDR at $OSR = 2^5$ which uses (m, n) bits inside the modulator are shown in Table 2.

Fig. 5. SQNDR at $OSR = 2^5$ in case of a 1-bit, 2-bit or 3-bit DAC usage inside the modulator. (a) In case of a 3-bit ADC inside the modulator. (b) In case of a 4-bit ADC. (c) In case of a 5-bit ADC. (d) In case of a 6-bit ADC.

ADC m [bit]	DAC n [bit]	Input Signal	Amplitude @max value	Input freq. Sampling freg.	Data points	SQNDR [dB] $@0SR = 2^5$
1	1		0.9		penne	47.29
2	1		1.9			50.40
2	2	Sine wave	2.9	1/2 ²⁰	2 ²⁰	53.30
3	1		3.9			55.40
3	2		5.9			59.03
3	3		6.9			61.30
4	1		7.9			60.50
4	2		11.9			63.45
4	3		13.9			65.75
4	4		14.8			67.45
5	1		15.9			66.47
5	2		23.7			69.33
5	3		27.8			71.48
5	4		29.7			72.17
6	1		31.9			72.26
6	2		47.5			75.15
6	3		55.7			76.97
6	4		59.6			77.84
6	5		61.9			78.20

Table 2. Summarized of the simulation results.

4. Conclusion

The extended Leslie-Singh architecture of 1st order $\Delta\Sigma$ AD modulator using multi-bit DAC has been investigated. Its SQNDR is analyzed and compared for various combinations of the internal ADC and DAC resolutions. The simulation results show that for 1-bit resolution increase of the multi-bit ADC, its SQNDR is increased by 6 dB. Also, we found that for 1-bit resolution increase of the multi-bit internal DAC from 1-bit to 3-bit, the SQNDR is increased by 3 dB, whereas for more than 4-bit, it saturates. Notice that the multi-bit DAC improves the modulator loop stability and the reason why the DAC resolution increase from 1-bit to 3-bit leads to SQNDR improvement is the maximum input amplitude increase with keeping stability.

Based on the study here, we consider for the multi-bit 1st-order $\Delta\Sigma AD$ modulator design as follows: Due to the recent advancement of ADC circuit and architecture as well as LSI device and process technologies, a fast and low-power ADC can be realized, and hence the multi-bit $\Delta\Sigma AD$ modulator with an internal ADC of 4-bit, 5-bit or 6-bit resolution can be practical; there, a 3-bit DAC inside the AD modulator would suffice (instead of a 4-bit, 5-bit or 6-bit DAC) in the viewpoint of the SQNDR using the extended Leslie-Singh architecture. In other words, usage of a 1-bit or 2-bit internal DAC sacrifices the overall ADC SQNDR there.

References

- [1] Understanding Delta-Sigma Data Converter, S. Pavan, R. Schreier, G. C. Temes, Second Edition, IEEE Press (New York, USA), 2017.
- [2] T. C. Leslie and B. Singh, "An Improved Sigma-delta Modulator Architecture," IEEE International Symposium on Circuit and Systems (New Orleans, LA) May 1990.
- [3] T. Yoshitome and K. Uchimura, "Quantization Noise Reduction in 1-bit Oversampling A-to-D Converter", *IEICE General Conference in Spring*, A-126, March 1988.

7

- [4] J. M. de la Rosa, R. Schreier, K. Pun, and S. Pavan, "Next-Generation Delta-Sigma Converters: Trends and Perspectives," *IEEE Journal on Emerging and Selected Topics in Circuits and Systems*, Vol. 5, No. 4, pp. 484-499, 2015.
- [5] Z. Tan, H. Jiang, H. Zhang, X. Tang, H. Xin, and S. Nihtianov, "Power-Efficiency Evolution of Capacitive Sensor Interfaces," *IEEE Sensors Journal*, Vol. 21, No. 11, pp. 12457-12468, 2021.
- [6] S. Park, G.-H. Lee, and S. Cho, "A 2.92- μW Capacitance-to-Digital Converter With Differential Bondwire Accelerometer, On-Chip Air Pressure, and Humidity Sensor in 0.18-μm CMOS," *IEEE Journal of Solid-State Circuits*, Vol. 54, No. 10, pp. 2845-2856, 2019.
- [7] A. Rezapour and H. Shamsi, "Digital Noise Coupled MASH Delta-Sigma Modulator," *IEEE Transactions on Circuits and Systems II: Express Briefs*, Vol. 66, No. 1, pp. 41-45, 2019.
- [8] C. Briseno-Vidrios, A. Edward, N. Rashidi, and J. Silva-Martinez, "A 4 Bit Continuous-Time ΣΔ Modulator With Fully Digital Quantization Noise Reduction Algorithm Employing a 7 Bit Quantizer," *IEEE Journal of Solid-State Circuits*, Vol. 51, No. 6, pp. 1398-1409, 2016.
- [9] L. He, G. Zhu, F. Long, Y. Zhang, L. Wang, F. Lin, L. Yao, and X. Jiang, "A Multibit Delta– Sigma Modulator With Double Noise-Shaped Segmentation," *IEEE Transactions on Circuits* and Systems II: Express Briefs, Vol. 62, No. 3, pp. 241-245, 2015.
- [10] J. M. de la Rosa, "Sigma-Delta Modulators: Tutorial Overview, Design Guide, and State-of-the-Art Survey," *IEEE Transactions on Circuits and Systems I: Regular Papers*, Vol. 58, No. 1, pp. 1-21, 2011.
- [11]X. Li, T. Feng, L. Nengvang, S. Katayama, J. Wei, H. Lin, K. Naganuma, K. Sasai, J. Saito, A. Kuwana, and H. Kobayashi, "Charge Domain Folding ADC for Multi-bit ΔΣAD Modulator," *Journal of Technology and Social Science*, Vol. 6, No. 2, pp.27-37, 2022.
- [12] L. Nengvang, S. Katayama, J. Wei, L. Sha, A. Kuwana, K. Naganuma, K. Sasai, J. Saito, K. Morishita, and H. Kobayashi, "Generalized Leslie-Singh Architecture of 1st order Delta-Sigma AD Modulator with Different Resolutions of ADC and DAC," *5th International Conference on Technology and Social Science* (Kiryu, Japan) December 2021.