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Abstract. Previously, a method was proposed for identifying nonlinear parameters using Auto-
Regressive time series analysis and the method of averaging; however, the application to the actual 
structure deterioration detection problem was not considered. Here, the method’s application to a 
nonlinear circular ring is described, for use in the pipe thinning detection problem. First, the 
identification problem is formulated by applying the averaging method to Evensen’s nonlinear circular 
ring model. The regression problem is formulated using the difference between the instantaneous 
natural angular frequency and the linear natural angular frequency. Operational validation of the 
proposed identification method is performed using numerical simulations based on the fourth order 
Runge-Kutta method. Furthermore, numerical analysis of the pipe thinning detection problem using 
the angular frequency and nonlinear coefficient is described. 

1. Introduction 
Many pipes for water, gas, and oil distribution experience deterioration owing to their prolonged 

utilization. Accidents caused by leaks and bursts result in service interruptions and supply disruptions. 
Appropriate maintenance is required for preventing accidents. Pipe renewal based on the results of 
non-destructive testing (NDT) is important for efficient maintenance. 

NDT technology that detects a change in the pipe eigen frequency owing to the pipe thickness 
change has been proposed [1,2,3,4]. The method focuses on the in-plane bending vibration mode of a 
cylindrical shell [5,6,7]. The above NDT method is based on the eigenfrequency change of the in-plane 
bending mode of a cylindrical shell. Therefore, the sensitivity to the pipe thickness decreases based on 
the linear relationship between the eigenfrequency and the pipe thickness. Sensitivity improvement 
beyond that achieved using the previously proposed method is required for more effective maintenance 
operations. 

Previously, an identification method was proposed based on the Auto-Regressive (AR) time series 
analysis using the data for transient free vibrations [8,9]. The proposed identification method was 
composed of a regression formula using the Krilov-Bogoliubov-Metropolsky (KBM) method, high-
precision estimation of instantaneous frequency using a Kalman filter, and estimation of instantaneous 
amplitude using the Hilbert transform. An important advantage of the proposed method was its 
identification ability using a small number of samples. However, the application of the method to the 
actual deterioration detection was not considered [10]. In this study, the application to a nonlinear 
circular ring is described, for solving the pipe thinning detection problem.  

First, the identification problem is formulated by applying the method of averaging to Evensen’s 
nonlinear circular ring model [11]. The regression equation is obtained using the approximation 
solution of the amplitude-dependent eigenfrequency. Operational validation of the proposed 
identification method is performed using numerical simulations based on the Runge-Kutta method. 
Numerical analysis of the pipe thinning detection problem is conducted using the angular frequency 
and nonlinear coefficient. 
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2. Formulation of the identification problem 

2.1 Analytical consideration based on the method of averaging 
The model of a circular cylindrical ring is shown in Fig. 1. The coordinate axes are as follows: the 

axial coordinate is 𝑥, the polar coordinate is 𝑦, and the radial coordinate is 𝑧. The pipe width is 𝑏, 
the pipe radius is 𝑅, and the pipe thickness is ℎ. In addition, the displacements of each coordinate are 
as follows: the deflection in the radial direction is 𝑤, and the displacement in the circumferential 
direction is 𝑣. 

 

 
 

Fig. 1. Model of circular a cylindrical ring. 
 
According to Evensen [11], the Lagrangian for the case of the in-extensional vibration (no stretching 

of the middle surface of the shell) is given by Eq. (1). 
 𝐿 = 𝜌ℎ𝑙2 𝑑𝐴𝑑𝑡 𝜋𝑅 + 𝑛 𝐴2𝑅 𝜋 − 𝐸𝑙ℎ24 1 − 𝑣 𝐴 𝑛𝑅 𝜋𝑅                         1  

 
Here, Young’s modulus is 𝐸 , pipe density is 𝜌 , Poisson’s ratio is 𝜐 , and wave number in 

circumferential direction is 𝑛. In addition, we assume the following deflection function: 
 𝑤 = 𝐴 𝑡 cos 𝑛𝑦𝑅 − 14 𝑛𝑅 𝐴 𝑡                                                       2  
 
Here, 𝐴 𝑡  represents the modal coordinate of the 𝑛-th wave number. The non-dimensional 

equation of motion is obtained as follows using the non-dimensional coordinate 𝜁 = 𝐴 /ℎ and the 
non-dimensional nonlinear parameter 𝜖:  

 𝑑 𝜁𝑑𝑡 + 12 𝜖𝜁 𝜁 𝑑 𝜁𝑑𝑡 + 𝑑𝜁𝑑𝑡 + 𝜁 = 0.                                      3  
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Here, the linear eigenangular frequency 𝜔  and the non-dimensional nonlinear parameter 𝜖 are 
as follows: 

 𝜔 = 𝐸𝜌𝑅 𝑛 − 112 1 − 𝜐 ℎ𝑅 , 𝜖 = 𝑛 ℎ𝑅 .                                            4  

 
The amplitude and phase equations are obtained from Eqns. (3) and (4) using the method of 

averaging. Here, 𝑎 represents the amplitude, and 𝜑 represents the phase.  
 𝑑𝑎𝑑𝑡 = 0                                                                              5  
 𝑑𝜑𝑑𝑡 =  − 𝜖8 𝜔 𝑎 1 + 3𝜖16 𝑎                                                       6  
 
The approximate solution of the eigenangular frequency is obtained by neglecting the high-order 

infinitesimal of 𝜖. 
 𝜔 𝑎 = 𝜔 1 − 𝜖4 𝑎                                                              7  
 

2.2 Derivation of the nonlinear parameter regression formula 
The formula for estimating the nonlinear stiffness parameter is obtained based on Eq. (7). The 

regression formula based on the least-squares method is given by Eqns. (8) ~ (10). 
 𝜔 𝑡⋮𝜔 𝑡 = 1 −𝑎 𝑡 /4⋮ ⋮1 −𝑎 𝑡 /4 𝛼𝛽                                                     8  

 𝐘 = 𝜔 𝑡⋮𝜔 𝑡 , 𝐗 = 1 −𝑎 𝑡 /4⋮ ⋮1 −𝑎 𝑡 /4 , 𝛉 = 𝛼𝛽 = 𝜔𝜖𝜔                                 9  

 𝛉 = 𝐗 𝐗 𝐗 𝐘                                                                10  
 
Where, 𝑡 , … , 𝑡  represent the discrete time. 
 

3. Flowchart 
A flowchart of the proposed identification method is shown in Fig. 2. The algorithm is composed 

of the instantaneous eigenangular frequency estimation and the amplitude estimation. The 
instantaneous eigenangular frequencies are inferred by estimating the time-varying AR model based 
on the parameter estimation problem of the Kalman filter. The instantaneous eigenangular frequencies 
are obtained from the characteristic root of AR coefficient polynomial. The instantaneous amplitude 
is calculated using the Hilbert transform. The nonlinear coefficients are estimated using the derived 
regression formula in the above section, using the instantaneous eigenangular frequency and the 
instantaneous amplitude.  
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Fig.2. Flowchart of the proposed identification algorithm. 

4. Verification of the fundamental operation 

4.1 Conditions 
The calculation conditions are presented in Table 1. Here, 𝑑𝑡 = 0.10 is the sampling time, 𝜁 0 =5 and 𝜁 0 = 0 are the initial conditions, the linear eigenangular frequency is 𝜔 = 1, 𝛽 = 0.005 

is the damping ratio, and 𝜖 = 0.005 is the nonlinear spring coefficient. The time dependence of the 
free oscillation is shown in Fig. 3, while the dependence of the restoring force on the displacement is 
shown in Fig. 4. Here, the restoring force means the amount of the linear spring force was divided the 
amplitude dependence mass. The restoring force was symmetric in the region between the tensile and 
compression sides. 

 
Table 1 Values condition of nonlinear parameters and initial conditions 𝒅𝒕 𝝎𝒏 𝜷 𝝐 𝜻 𝟎  𝜻 𝟎  
0.1 1.0 0.005 0.005 5.0 0.0 

 

 
Fig.3. Time dependence of the nonlinear free vibration, for the modal coordinate. 
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Fig.4. Restoring force vs. deformation. 

4.2 Results and discussion 
The estimation results of the instantaneous eigenangular frequency using the Kalman filter are 

shown in Fig. 5. Here, the vertical and horizontal axes represent the eigenangular frequencies and time, 
respectively. The calculation conditions were as follows: the time series model used the time-varying 
AR(M) model (here, M = 8), the covariance of the system noise is 𝜎 = 1, the covariance of the 
observation noise was 𝜎 = 10 , the initial value of the error covariance matrix was 𝑃 0 =10 𝑰(where, 𝑰 is the 𝑀 × 𝑀 identity matirix), and the initial value of the unknown AR coefficient 
vector was 𝛉 0 = 𝟎(where, 𝟎 is the 1 × 𝑀 zero vector). Here, the black dotted line represents the 
region of the time series that used the identification algorithm.  

The estimated value of the instantaneous angular eigenfrequency gradually increased. Moreover, it 
converged to a constant value of the eigenangular frequency. The eigenangular frequency of the linear 
system was 1.00 rad/s, and the estimated converged eigenangular frequency was 0.9997 rad/s. 
Therefore, the estimated converged eigenangular frequency agreed well with the actual linear 
eigenangular frequency. 

 

 
Fig.5. Estimated instantaneous angular frequency.  
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The estimation results of the relationship between the restoring force and displacement are shown 
in Fig. 6. Here, the vertical and horizontal axes represent the restoring force and the displacement, 
respectively. In addition, the black circle and blue solids curves show the true and estimated values, 
respectively. The estimated coefficients are listed in Table 2. The error rates of the linear eigenangular 
frequency and the non-dimensional nonlinear parameter were 0.03% and 2%, respectively. Hence, the 
operation of the proposed identification algorithm was confirmed. The estimated relationship between 
the restoring force and the displacement was identical to the actual one. In this method, the estimation 
accuracy of the parameter depends on the initial amplitude. Especially, the accuracy decreasing expects 
in case of the small initial amplitude.  

 

  
Fig.6. Estimated relationship between the restoring force and the displacement.  

 
Table 2 Estimation results of the linear and nonlinear parameters. 

Values 𝜔𝑛 𝜖 
True 1.0000 0.0050 

Estimation 0.9997 0.0049 

4.3 Performance dependence on the nonlinear coefficient 
In this section, the dependence of the system identification method’s performance on the nonlinear 

parameter is considered. The calculation results for the relationship between the displacement and the 
restoring force are shown in Fig. 7. Here, panel (a) shows the results for 𝜔 = 1.000, 𝜖 = 0.010, panel 
(b) shows the results for 𝜔 = 1.000, 𝜖 = 0.025, and panel (c) shows the results for 𝜔 = 1.000, 𝜖 =0.050. The estimated values are listed in Tabel 3. 

 
Table 3 Estimation results of the linear and nonlinear parameters. 

Condition True Estimation 

(a) 𝜔 = 1.000 𝜔 = 0.9998 𝜖 = 0.010 𝜖 = 0.0097 

(b) 𝜔 = 1.000 𝜔 = 0.9988 𝜖 = 0.025 𝜖 = 0.0227 

(c) 𝜔 = 1.000 𝜔 = 0.9894 𝜖 = 0.050 𝜖 = 0.0382 
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(a) 𝜔 = 1.000, 𝜖 = 0.01 

 
(b) 𝜔 = 1.000, 𝜖 = 0.025 

 
(c) 𝜔 = 1.000, 𝜖 = 0.05 

 
Fig.7. Estimation results of the relationship between the restoring force and the displacement. 
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 For case (a), the estimated value of the linear angular frequency was 0.9998 (compare to the true 
value of 1.000), and the estimated value of the nonlinear parameter was 0.0097 (compare to the true 
value of 0.010). For case (b), the estimated value of the linear angular frequency was 0.9988 (compare 
to the true value of 1.000), and the estimated value of the nonlinear parameter was 0.0227 (compare to 
the true value of 0.0250). For case (c), the estimated value of the linear angular frequency was 0.9894 
(compare to the true value of 1.000), and the estimated value of the nonlinear parameter was 0.0382 
(compare to the true value 0.0500). In each case, the estimated values of the linear angular frequency 
and the nonlinear parameter agreed well with the true values.  

6. Numerical analysis of the pipe thinning detection problem 
In this section, the numerical analysis of the pipe thinning detection problem is presented. Here, the 

test pipe was assumed to be a thin aluminum ring [12], and the following numerical conditions were 
assumed: Young’s modulus 𝐸  = 68 GPa, density 𝜌 = 2800  kg/m3, Poisson’s ratio 𝑣  = 0.3, 
thickness ℎ = 0.05 − 0.11  mm, and radius 𝑅 = 32.5  mm. The thickness dependence of the 
estimated values is shown in Fig. 8. Here, the horizontal axis represents the pipe thickness, the left 
vertical axis shows the angular frequency, and the right vertical axis shows the nonlinear coefficient. 
In addition, the black circles show the estimated angular frequency, the blue circles show the estimated 
nonlinear coefficient, the black solid line shows the true angular frequency, and the blue solid line 
shows the true nonlinear coefficient. The estimated values agree well with the corresponding true 
values, in all cases.  

 

 
Fig. 8. Thickness dependence of estimated values. 

 
A linear change in the estimated value with respect to the pipe thickness thinning was observed in 

the case of the angular frequency. On the other hand, a nonlinear change in the estimated value with 
respect to the pipe thickness thinning was observed in the case of the nonlinear coefficient. Here, the 
sensitivity of the pipe thinning was defined by the thickness derivative with respect to the ratio between 
the estimated value and the nominal value. In the thinning process with a nominal thickness of 0.11 
mm to a thinning thickness of 0.10 mm, the ratio of the eigen-angular frequency decreased by 0.09%. 
In addition, the sensitivity of the eigen-angular frequency with respects to the pipe thinning did not 
depend on the pipe thickness. On the other hand, in the case of the above thinning process, the ratio of 
the nonlinear coefficient decreased by 0.1798%. Therefore, the sensitivity of the pipe thinning 
detection in the case of the nonlinear coefficient was higher than that in angular frequency case.  
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In general, the sensitivity of the pipe thinning detection using the nonlinear coefficient depends on 
the pipe thickness. Theoretically, the sensitivity of the nonlinear coefficient is higher than that of the 
angular frequency when the pipe thickness is over half. Therefore, under this calculation condition, a 
high sensitivity for the initial pipe thinning detection (i.e., deterioration sign) is implied.  

7. Conclusion 
In this study, we considered the application of a nonlinear stiffness identification method based on 

the AR time-series analysis to a nonlinear circular ring. Consequently, the following results were 
obtained. 

(1) The identification algorithm for a nonlinear circular ring was derived based on the averaging 
method.  

(2) Operation validation using the numerical experiment was conducted using the fourth order 
Runge-Kutta method, and the estimated values of the eigenangular frequency and the nonlinear 
coefficient agreed well with the corresponding true values. 

(3) A numerical analysis of the pipe thinning detection problem was conducted. As a result, the 
sensitivity for the pipe thinning detection in the case of the nonlinear coefficient was higher than that 
in the angular frequency case. The high sensitivity for the pipe thinning detection in the early stage is 
suggested.  
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