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Abstract. A pipe thickness estimation method using an in-plane bending mode frequency for the 
detection of the water main deterioration was already proposed in a previous paper. There is a problem 
that the conventional work was not considered the dependency of the number of connections. The 
actual distribution mains are consisted by the cylindrical shells of 3m ~ 5m length. However, the 
behavior of the in-plane bending mode frequency in the gradually increase the number of coupled 
cylindrical shells is not clear. Moreover, a simplified analysis model is required for conduct the pipe 
thickness estimation. In this paper, the vibration analysis of in-plane bending mode in coupled 
cylindrical shell was conducted using a coupled circular ring model for pipe thickness estimation. First, 
the formulation of analysis model was conducted based on the two-dimensional circular ring model. 
Furthermore, the vibration experiment was conducted using ideal coupled thin cylindrical shell pipes. 
In addition, the comparison between experiment result and theoretical result was performed. Finally, 
the estimation test of pipe thickness was conducted using the experiment results and theoretical model.  

1. Introduction 

Many distribution pipes for water, gas and oil are deteriorating because of operation beyond their 
service life. Accidents caused by leaks and bursts result in service interruptions and supply disruptions. 
Appropriate maintenance is required to prevent accidents. Renewing pipes based on the results of non-
destructive testing (NDT) is important for efficient maintenance operations. Therefore, the 
establishment of NDT technology for in-service pipes is desired in terms of quantification of the 
deteriorated grade. 

NDT technology using the eigen frequency change because of a lack of pipe thickness has been 
proposed. The method focuses on the in-plane bending vibration mode of the cylindrical shell [1,2,3,4]. 
The occurrence of the in-plane bending vibration mode in an actual pipe was verified by experiments 
and numerical simulations [5,6]. Moreover, an analysis of the effects of the incidental structure on the 
eigen frequency change of the cylindrical shell using the semi-analytical receptance method was 
conducted to remove the influence of valves, plugs, etc [7]. In addition, an experimental modal analysis 
was conducted to verify the validation of the above analysis. Furthermore, static deformation analysis 
using the finite-element method was conducted to determine the correspondence between the vibration 
test and the actual flattening test [8]. 

However, the conventional approach does not consider the case of the coupled cylindrical shell. 
The actual distribution mains consist of coupled cylindrical shells of 3-5m in length. The occurrence 
of the in-plane bending mode (i.e., ring vibration mode) was confirmed using an experimental modal 
analysis in a completely coupled actual distribution main as an extreme situation [9].  
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However, the behavior of the in-plane bending mode frequency in a gradually increasing number 
of coupled cylindrical shells is not clear. Moreover, a simplified analysis model is required in order to 
estimate the pipe thickness.  

In this study, vibration analysis of the in-plane bending mode in a coupled cylindrical shell was 
conducted using a coupled circular ring model for pipe thickness estimation. First, the analysis model 
was formulated based on a two-dimensional circular ring model. The circular rings were coupled with 
stiffnesses in the radial direction. Furthermore, a vibration experiment was conducted using ideal 
coupled thin cylindrical shell pipes. Moreover, a comparison between the experiment and theoretical 
results was conducted. Finally, the pipe thickness was estimated using the experimental results and 
theoretical model.  

2. Formulation of coupled circular ring model 

An analysis model based on a coupled circular ring is shown in Fig. 1. The model represents the 
case when the number of coupled shells is two. Here, only the displacement of the radius direction is 
assumed. The radius displacement is described as 𝑢ଵሺ𝜃ሻ, 𝑢ଶሺ𝜃ሻ . The under index represents the 
location of the cylindrical shell. Two shells are connected by a spring along the radial direction, and 
the spring constant has constant values (i.e., the spring constant is 𝑘).  

 

 
 

Fig.1. Analysis model of coupled cylindrical shell. 

 
The Lagrangian of Eq. (1) is derived using two-dimensional ring theory.  
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(1) 
 
Here, 𝑢௜ represents the displacement in the radius direction, 𝑣௜ represents the displacement in the 

circumference direction, 𝑢ሶ ௜ represents the velocity in the radius direction, 𝑣ሶ௜ represents the velocity 
in the circumference direction, 𝑁 represents the number of circular rings, 𝑀 represents the number 
of springs along the radial direction, 𝐿 represents the length of the cylindrical shell, ℎ represents the 
pipe thickness, 𝑅 represents the average radius, 𝐸 represents Young’s modulus, 𝜌 represents the 
density, 𝐴 represents the sectional area (𝐴 ൌ 𝐿ℎ), and 𝐼 represents the moment of inertia of area (𝐼 ൌ
𝐿ℎଷ/12). Here, the geometrical conditions are supposed as follows: 𝐿/𝑅 ൒ 2 and 𝑅/ℎ ≫ 1 [10]. 



Journal of Mechanical and Electrical Intelligent System (JMEIS) 

25 
J. Mech. Elect. Intel. Syst., Vol.4, No.3, 2021 

The displacement in the radius direction is as follows:  
 

𝑢௜ ൌ 𝑎௜ cos 2𝜃 ൅ 𝑏௜ sin 2𝜃 .                                                           ሺ2ሻ 
 
Here, it is assumed that circumferential wave number is 2; moreover, 𝑎௜, 𝑏௜  represent the 

generalized coordinates.  
For example, the calculation result of the equation of motion is as follows, using the Lagrangian 

equation when the number of connections is 2: 
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The equivalent mass, equivalent spring constant, and coupled spring constant are as follows:  
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3. Experimental setup 

3.1 Test pipe 

The coupled circular ring was composed of a general aluminum cylindrical shell. The parameters 
of the cylindrical shell were as follows: thickness ℎ ൌ 0.11 mm, length 𝐿 ൌ 127 mm, and radius 
𝑅 ൌ 32.5 mm. The circular rings were connected using an aluminum tape (thickness of 0.1 mm), as 
shown in Fig. 2. The aluminum tape had notches in the circumferential direction. The bending mode 
wave of the long wavelength did not affect the notches because the spaces between notches differed 
from the wavelength of the second in-plane bending mode. Here, the wavelength of the second in-
plane bending mode was 102.1 mm, and the spaces between notches were approximately 2.9 mm (i.e., 
𝑀 ൌ 70). A schematic of the connection method is presented in Fig. 3. The aluminum tape had no cut 
region (approximately 1 mm) in the center of width. The synchronized motion between the edges of 
the two circular rings was realized by the contribution of no region motion. Here, the number of 
connections was 2 (total length 𝐿 ൌ 258 mm) and 8 (total length 𝐿 ൌ 1033 mm).  

 

 
 

Fig. 2. Schematic figure of aluminum tape to connect the circular rings. The schematic is view 
from above. Here, the black stripes represent the notch. 
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Fig. 3. Connection arrangement of coupled thin circular rings. 

3.2 Experimental setup 

A schematic diagram of the experimental setup is shown in Fig. 4. The exciter was WaveMaker05 
(Asahi Seisakusyo, Inc.), and the power amplifier was APD-050FCA (Asahi Seisakusyo, Inc.) and the 
fast Fourier transform (FFT) analyzer was DS-2000 (Ono Sokki, Inc.). The output signal of the swept 
sine wave was generated by the function of the FFT analyzer. The excitation force was loaded in the 
center of the coupled cylindrical shell, and the acceleration sensor was placed in the upper part of the 
shell. The acceleration signal was input to the FFT analyzer. The frequency response function was 
obtained using the cross-spectrum between the input and output signals. The condition of signal 
measurement was as follows. The sampling frequency was 2 kHz, the voltage range was 1.41 V, the 
number of samples for FFT was 4096, and the average of the frequency response function was 
conducted from 100 measurements.  

 

 
Fig. 4. Experimental setup: the system contains the FFT analyzer, acceleration sensor, power 
amplifier, exciter, and coupled cylindrical shell. The coupled cylindrical shell is suspended by 
thin strings. Furthermore, exciter is excited by sweep signal from FFT analyzer.  

4. Results and discussion 

The experimental values of the frequency response function are shown in Fig. 5. The horizontal 
axis represents the frequency, and the vertical axis represents the amplitude. Furthermore, the black 
solid line shows the case where the number of connections is two, and the blue solid line shows the 
case where the number of connections is eight. The resonance peaks in the case of two connections 
can be observed a 71.9 and 103 Hz. Similarly, the resonance peaks in the case of eight connections are 
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found at 65, 76, 85 and 102 Hz. The above experimental values are indicated by the black and blue 
dotted lines in Fig. 5.  

Furthermore, experimental and calculation results were compared using the theoretical model in the 
Chapter 2. The calculation conditions are as follows: Young’s modulus 𝐸 ൌ 86 GPa, density 𝜌 ൌ
2800 kg/mଷ , pipe length 𝐿 ൌ 127 mm , pipe thickness ℎ ൌ 0.11 mm , and average radius 𝑅 ൌ
32.5 mm. When the number of connections is two, the spring constant 𝑘 is chosen to agree with the 
calculation and experimental values; as a result, the spring constant k is 20 N/m. The number of springs 
in circumferential direction (𝑀) is 70.  

The results of the experiment and calculation values for the number of connections are listed in 
Table. 1. The two observable modes are obtained by considering the node in the mode shape, and the 
calculated eigenfrequencies are 63.3 and 105.4 Hz, respectively. On the other hand, the experimental 
values are 71.9 and 102.0 Hz, and the errors are 13.5% and 3.3%, respectively. The lower calculated 
eigenfrequency of 63.3 Hz agrees with the theoretical value of the two-dimensional circular ring [11]. 
The coupled spring constant is not contributed to lowest frequency because of the two rings are 
displace in same radius direction, as the result, the lowest frequency of the connected rings agrees with 
the two-dimensional ring without connection.  

The ring frequency is as follows:  
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The results of the experiment and calculation values in the case where the number of connections 

is eight are shown in Table. 2. The four observable modes are obtained considering the node in mode 
shape, and the calculated eigenfrequencies are 63.3, 78.0, 91.6, and 105.4 Hz. On the other hand, the 
experimental values are 65.0, 76.0, 85.0, and 102.0 Hz, and the errors are 2.7%, 2.6%, 7.2%, and 3.3%, 
respectively. The lower calculated eigenfrequency (63.3 Hz) also agrees with the theoretical value of 
the two-dimensional circular ring.  

 

 
 

Fig. 5. Frequency response function when the numbers of connections are two and eight. 
Here, black dotted lines show the eigenfrequency in case of the number of connections of 
two, blue dotted lines show the eigenfrequency in case of the number of connections of eight. 
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Table 1 Summary of experimental and calculation results when the number of connections 
is two 
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Table 2 Summary of experimental and calculation results when the number of the 
connections is eight 
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Table 2 Summary of experimental and calculation results when the number of the 
connections is eight (continued) 
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5. Application to pipe thickness estimation using the inverse analysis of eigen frequency 

Pipe thickness estimation was conducted using an inverse analysis based on two-dimensional ring 
theory. The inverse problem for pipe thickness estimation is defined by Eq. (7).  

 

ℎ∗ ൌ argmin
௛
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௛
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ଶ

                               ሺ7ሻ 

 
The estimated pipe thickness was obtained by minimizing the objective function 𝐽 of Eq. (7). Here, 

the function 𝑔 was selected as suitable for the experimental values and theoretical prediction model. 
For example, in the case of the ring resonance frequency, the function 𝑔 was given by Eq. (6). The 
method based only a lowest frequency is verified the simplest case in this paper. The authors will 
consider the case of the estimation using the multiple eigen frequencies in the future work.  

The visualization results of the objective function shape are shown in Fig. 6 for the ring resonance 
frequency. The horizontal axis represents the estimated pipe thickness, and the vertical axis represents 
the value of the objective function. In addition, the different colors of the solid line show the various 
cases based on the experimental eigenfrequencies (see Table 3). The eigenfrequencies contain the 
reading error of eigenfrequency from peak of frequency response function. 

The calculation conditions are as follows: Young’s modulus 𝐸 ൌ 86 GPa, Poisson’s ratio 𝑣 ൌ
0.345 , density 𝜌 ൌ 2800 kg/mଷ , average radius 𝑅 ൌ 32.5 mm , and wavenumber of the 
circumferential direction 𝑛 ൌ 2. As a result, the objective function shape is a valley structure. The 
trends were observed for different experimental eigen frequencies. Therefore, the estimated pipe 
thickness was obtained by referring to the thickness at the minimum value of the objective function.  

 

 
 

Fig.6. Visualization result of the objective function to estimate the pipe thickness. Here, blue 
solid line shows the case of the number of connections of 2, red solid line shows the case of 
the number of connections of 4, magenta solid line shows the case of the number of 
connections of 6, green solid line shows the case of the number of connections of 8. 

 
The estimation results for the pipe thickness are represented in Table 3. The estimated thicknesses 

were obtained in the range of 0.113-0.125 mm. However, the true value of the pipe thickness was 0.11 
mm; hence, the relative error between true and estimation ranged from 2.73% to 13.6%. Thus, the 
realization of pipe thickness estimation using the eigenfrequency of the in-plane bending vibration 
mode is implied. In future work, confirmation of the actual field distribution is expected using the 
proposed diagnosis method.  
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Table 3 Estimation results of the pipe thickness. 

Number of 
connections 

Estimation result 
Frequency [Hz] Thickness [mm] 

1 65.0 0.113 
2 71.9 0.125 
4 65.6 0.114 
6 67.5 0.117 
8 65.0 0.113 

6. Conclusions 

In this study, the vibration analysis of the in-plane bending mode was performed using a coupled 
circular ring model. Moreover, the pipe thickness estimation based on the eigen frequency of the in-
plane bending vibration mode was performed. The following results were obtained. 

(1) The analysis model was formulated using a coupled ring model with spring stiffness along the 
radial direction. In addition, the model was verified comparing the experimental and theoretical 
consideration. 

(2) The lowest eigenfrequency of the above analysis model agreed with the two-dimensional ring 
frequency.  

(3) The pipe thickness estimation was verified operationally. The error between the true and 
estimation values ranged from 2.73% to 13.6%.  
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